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Abstract.—Interpolation of stream habitat can be very useful for habitat assessment. Using a small number

of habitat samples to predict the habitat of larger areas can reduce time and labor costs as long as it provides

accurate estimates of habitat. The spatial correlation of stream habitat variables such as substrate and depth

improves the accuracy of interpolated data. Several geographical information system interpolation methods

(natural neighbor, inverse distance weighted, ordinary kriging, spline, and universal kriging) were used to

predict substrate and depth within a 210.7-m2 section of a second-order stream based on 2.5% and 5.0%
sampling of the total area. Depth and substrate were recorded for the entire study site and compared with the

interpolated values to determine the accuracy of the predictions. In all instances, the 5% interpolations were

more accurate for both depth and substrate than the 2.5% interpolations, which achieved accuracies up to 95%

and 92%, respectively. Interpolations of depth based on 2.5% sampling attained accuracies of 49–92%,

whereas those based on 5% percent sampling attained accuracies of 57–95%. Natural neighbor interpolation

was more accurate than that using the inverse distance weighted, ordinary kriging, spline, and universal

kriging approaches. Our findings demonstrate the effective use of minimal amounts of small-scale data for the

interpolation of habitat over large areas of a stream channel. Use of this method will provide time and cost

savings in the assessment of large sections of rivers as well as functional maps to aid the habitat-based

management of aquatic species.

The measurement of habitat is central to the

management of fish (Noss et al. 1997; Bain et al.

1999; Bain and Stevenson 1999; Murphy and Willis

1999). The structure of stream habitat, which is

inherently spatial in nature, is often measured at multiple

spatial scales (Frissell et al. 1986; Fisher and Rahel

2004; Brenden et al. 2006). Important stream habitat

variables, such as bottom substrate (i.e., rock sizes) and

water depth, that can be measured at small (microhab-

itat) scales manifest themselves at larger scales as riffle

and pool sequences (Leopold and Maddock 1953, 1957;

Yang 1971, 1996; Powell 1998). Although an under-

standing of habitat at both small and large spatial scales

is useful for fish management, data collection at small

scales is often avoided because of the time and high

labor costs it entails. The importance of spatial scaling

of habitat data has led to increasing use of geographical

information systems (GIS) in fisheries, where new

methods of spatial analysis of stream data are emerging,

especially in the interpolation of habitat data (Rastetter

et al. 1992; Childs 2004; Fisher and Rahel 2004).

Ultimately, GIS analysis of spatial habitat data

results in visual maps at scales ranging from micro-

habitat to landscape (Brenden et al. 2006). Even when

consistent and accurate spatial data are used, important

details can be lost owing to coarse map resolution

(Demers 2005). A map with a 1:100,000 resolution

may indicate a river flowing through an area but

completely miss details relevant to the management of

fish populations. Finer resolution is important for

ecological studies, in which data are often collected at

small (i.e., microhabitat) scales. The term ‘‘small’’

typically refers to resolutions of 1 m2 or less (Green-

berg 1991; Simonson 1993; Welsh and Perry 1998a,

1998b; Bunte and Abt 2001). Collection of small-scale

data over large geographic areas is difficult; data at

resolutions finer than 1:24,000 are only available for

limited geographic areas (Fisher and Rahel 2004).

Aerial and satellite methods can provide resolutions as

fine as 0.2 m, but the use of such methods is expensive

and they have some important limitations. Because of

the reflective nature of water surfaces and varying

water clarity, aerial surveys are not yet capable of

consistently classifying stream variables below the 1-m

scale. And because of the periodic or constant turbidity

of streams, field sampling is often the only practical

method for collecting accurate microhabitat data.

Geographical information systems such as ArcGIS

provide interpolation methods for creating predictive

maps. These methods include the trend, spline (SP),
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inverse distance weighted (IDW), pointinterp, ordinary

kriging (OK), universal kriging (UK), and natural

neighbor (NN) methods. The trend and SP methods

minimize the curvature of interpolated surfaces and

would thus not be appropriate for predicting the

(curved) topography of depth and substrate. The IDW

and pointinterp methods assign weights to cells as a

function of distance; they work well when the data

points are dense and are able to clearly delineate a

complex surface. Ordinary and universal kriging are

well suited to mapping directional influence on a

surface with adequate data. The various types of

kriging, including cokriging, UK, and OK, are based

on similar statistics but have unique strengths.

Universal kriging in particular is able to address the

issue of directional influence in a data set (Childs

2004). The IDW and NN methods are closely related

and use similar formulas for their calculations. The

main difference is that the latter weights spatially close,

known values more heavily, whereas the former

weights values further away more heavily. The

advantages of the NN method include the ability to

handle large data sets and clustered (nonrandom and

spatially autocorrelated) data well.

Interpolation of stream habitat is possible owing to

the patchiness and spatial correlation of variables such

as water depth and substrate size. In streams,

environmental influences produce differentially sized

patches of specific habitat types (Yang 1971, 1996;

Knighton 1998). Certain aspects of these patches are

predictable, such as rock size sorting (Komar and

Carling 1991) and the presence of velocity-controlled

depositional areas with abrupt substrate transitions

(Smith and Ferguson 1995; Purkait 2002). Stream

habitat is predictable because two samples of habitat

within adjacent areas of a habitat patch are likely to be

similar and spatially correlated (Armstrong 2000).

Spatial autocorrelation is a concern in some spatial

studies (Liebhold and Gurevitch 2002), but it is an

important element of predictability and accuracy in

habitat interpolation methods (Robertson 1987). Auto-

correlation in stream habitat structure creates the

potential for elimination of redundant data collection.

Optimizing sampling strategies has long been a goal of

those using GIS (Atkinson 1996). By nonrandomly

selecting habitat patch edges when collecting physical

spatial data and using interpolation to predict stream

habitat structure, one can create accurate maps using a

small subsample of the total stream habitat area.

Our overall study objectives were to examine the

applicability and accuracy of stream habitat estimation

using interpolation methods. The focus was on

interpolating the habitat of a stream section using data

from a small subsample of the total stream habitat area.

Interpolated maps will reduce the costs of habitat

assessments if the habitat over long sections of streams

can be accurately predicted from a small number of

habitat samples. Additionally, accurate microhabitat

maps of stream sections provide the option to scale up

to larger habitat scales; hence, the data would be

available at multiple scales. This is an important point

because data collected at coarse scales cannot be

accurately scaled down to the microhabitat scale

(McPherson et al. 2006). Further, an accurate map of

microhabitat data would provide location and area

estimates of specific habitat types, an important need

for the management of species with specific habitat

requirements.

Methods

Study area.—Our study site was a 30-m reach

(surface area, 210.7 m2) of Aaron’s Creek, which lies

within the Monongahela River system in Monongalia

County, West Virginia (NAD 1983; Universal Trans-

verse Mercator [UTM] zone 17N; �79.933465,

39.619004). There is sparse to moderate urban and

suburban development along approximately 70% of

this 13.5-km stream. The riparian area of the stream (5–

50 m wide) is a mixture of field, lawn, and mixed

hardwood forest. Canopy cover was calculated using a

densiometer at the upstream and downstream borders

of the site and averaged 25% overall. The study site

was selected because it contains a complete riffle and

downstream pool and exhibits natural flow and

sinuosity characteristics that are representative of the

stream as a whole.

Data collection.—The study site was represented as

two data layers, one for substrate and one for water

depth. Two people collected the data; one sampled

while wading in the stream, and the other recorded the

data. For the digital representation of substrate data, the

study site was divided into a grid of 2,268 cells, each

1/3 m2. The predominant substrate type was recorded

for each cell (quadrat; Table 1). Substrate values were

not recorded on dry land. Quadrat sampling of the

predominant substrate at a resolution 0.3048 m2

accurately represented the boundaries of the substrate

TABLE 1.—Size ranges used to categorize substrate type

within the study site at Aaron’s Creek. An additional category,

land, was used to represent dry land within the streambed.

Substrate category Diameter (mm)

Boulders .250
Cobble 76–250
Gravel 2–76
Sand 0.1–2
Silt 0.002–0.100
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patches. For the representation of water depth data, the

study site was divided into a grid of 1,188 cells, each

0.6096 m2. The spatial scale for depth was larger than

that for substrate because depth is more homogenous

over a given area. Water depth was measured in

centimeters at the center of each cell.

Data analysis.—The site grids of 2,268 substrate

values and 1,188 depth values represented the real-

world site digitally (hereafter called the actual coverage

of substrate or depth at the before-mentioned resolu-

tions) and were used in to assess the accuracy of the

interpolated values. Using the values for depth and

substrate, we created separate data layers for conduct-

ing UK, OK, SP, IDW, and NN interpolations (Tables

2, 3). The data were prepared and analyzed in

Microsoft Excel. ArcMap was used for georeferencing

the site location, interpolation, and map creation. Site

corner locations were entered into ArcMap, georefer-

enced for accuracy, and adjusted to match the size of

the study site. Because the size of a sample quadrat was

less than the accuracy of the global positioning system,

study site corner values were assigned UTM coordi-

nates corresponding to the center of each cell. This

allowed us to create an even distribution of the (x, y)

coordinate points at the specified resolutions using the

series fill function. Although real-world coordinates are

useful in locating a site on the geographic plane,

interpolations would be possible without a link to them

as long as the scale is consistent within the GIS.

Interpolation of substrate and depth.—Points (cell

quadrats) within the study site representing 2.5% and

5.0% of the total site area were selected with which to

interpolate substrate and depth for the entire study site.

These percentages were chosen to provide an initial

baseline for the accuracy of interpolations using 97.5%
and 95% less field data. Separate interpolations were

conducted with each of five interpolation methods:

IDW, NN, OK, SP, and UK. Point selection is the

crucial element for successful interpolation of maps;

the fewer points used to make a map, the more

important each of those points should be to minimize

the loss of accuracy. We expected that choosing a

combination of habitat patch boundary and substrate

anomalies would be the most effective approach. Our

point selection was accomplished by a three-step

process. We first focused on macrohabitat features,

such as bank and overall site definition, then on overall

habitat structure (termed median features), and finally

on microhabitat features, such as an atypical boundary

curve of a patch of sand. Approximately one-third of

the available data points were utilized in each of the

three steps. Each interpolation created a new map

representing water depth or substrate that was the same

size as the map of the study site.

Calculating the accuracy of interpolations.—Sever-

al methods were used to estimate the accuracy of the

interpolated values of water depth and substrate size. In

general, the methods compared the estimates of the cell

values of the interpolated maps with the corresponding

known cell values from the actual coverages of water

depth and substrate size. For comparisons, all of the

interpolated cell values of the predictive maps were

created by using the extract values to points function in

the spatial analyst toolbox in ArcMap. In this way,

there was a direct comparison of the predicted map and

the actual coverage for each data point. For substrate,

these methods included the percent of area match and

total exact coordinate match rate, accuracy trends, and

the root mean square error (RMSE); for depth they

included threshold values, RMSE, and accuracy trends.

The percent of area match was calculated for each

substrate type by comparing the area of predicted

substrate with the area of actual substrate. Thus, if an

interpolation predicted 10 m2 of sand and the actual site

contained 100 m2 of sand, the percent area match

would be 10%. The exact coordinate match rate was

calculated as the percentage of coordinate points from

the substrate and depth interpolations that matched the

actual coverage. If point number 2,264 was interpolat-

ed as land and listed as land on the actual coverage, it

was assigned a match.

TABLE 2.—Interpolation methods used to estimate water

depth and substrate size at the Aaron’s Creek study site. The

input data used for these interpolations covered from 2.5% to

80% of the total area of the site.

Interpolation method Percent of site area
Total number

of interpolations

Natural neighbor 2.5, 5.0, 10, 20, 40, 80 12
Inverse distance weighted 2.5, 5.0 4
Universal kriging 2.5, 5.0 4
Spline 2.5, 5.0 4
Ordinary kriging 2.5, 5.0 4

TABLE 3.—Number of 1/3-m2 sample quadrats (points) at

Aaron’s Creek used to interpolate substrate for a total stream

area of 2,268 quadrats and number of 0.6096-m2 quadrats

used to interpolate water depth for a total stream area of 1,188

quadrats. Interpolations were based on data from 2.5% to

80.0% of the total study area.

Percent of site area

Points per interpolation

Substrate Depth

2.5 56 29
5.0 113 59

10.0 226 118
20.0 452 236
40.0 904 472
80.0 1,808 944

STREAM HABITAT ASSESSMENT METHOD 3



The accuracy of depth interpolation was assessed

based on the assigned threshold values because depth is

a continuous variable. Actual site depths ranged from 0

to 60 cm, and we created 5, 10, and 20% threshold

values, which corresponded to interpolated values

within 3, 6, and 12 cm of the actual values. Therefore,

if an interpolated value fell within 3 cm (5% or less) of

the actual coverage value, it would be assigned a match

for the 5% threshold (e.g., actual depth ¼ 59 cm and

predicted depth ¼ 58 cm). Each successive threshold

would have more matches under its umbrella.

The RMSE was used because it indicates the

dispersion of data. To calculate it, we used the formula

r/=n, where r is the standard deviation of the sample

and n is the sample size. Comparing the dispersion

levels of interpolations is another way of determining

which interpolation best matches the digital represen-

tation of our study site’s substrate values.

The substrate interpolation method with the highest

accuracy was further evaluated based on input from 10,

20, 40, and 80% of the total stream area in addition to

the initial 2.5% and 5%. The depth interpolation

method with the highest accuracy was further evaluated

based on input from 10, 40, and 80% of the total stream

area in addition to the initial 2.5% and 5%. Trend

curves showing accuracy were created from these

evaluations. These curves indicated the extent to which

there were increases in accuracy with increases in data

collection.

Results

Raster maps of the interpolated values had degrees

of accuracy ranging from 6% to 79% for substrate and

from 19% to 95% for depth (Table 4; Figures 1–3). In

all cases, the 5.0% interpolations were more accurate

than the 2.5% interpolations. Natural neighbor inter-

polations achieved the highest level of accuracy for

both variables (Table 4; Figures 1–3). As a result, trend

curves were created to further explore this method’s

performance (Figures 3, 4).

Interpolated maps provide a visual comparison with

the initial coverages and aid in the assessment of

accuracy (Figures 1, 2). For instance, the SP method,

which performed very well in substrate area prediction,

TABLE 4.—Substrate interpolations at Aaron’s Creek by the

ordinary kriging (OK), universal kriging (UK), inverse

distance weighted (IDW), spline (SP), and natural neighbor

(NN) methods using 2.5% and 5.0% of the available data, and

the resulting exact coordinate and total area match percent-

ages.

Interpolation (% data) Exact coordinate Total area

OK (2.5) 22 16
UK (2.5) 29 13
IDW (2.5) 30 14
UK (5.0) 31 41
SP (2.5) 33 57
OK (5.0) 35 6
IDW (5.0) 43 31
NN (2.5) 46 45
SP (5.0) 46 72
NN (5.0) 61 79

FIGURE 1.—Maps of the substrate at Aaron’s Creek as determined by detailed measurements and as interpolated by the inverse

distance weighted (IDW), natural neighbor (NN), ordinary kriging (OK), spline (SP), and universal kriging (UK) methods from

2.5% and 5.0% of the area of the study site.
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did not produce accurate maps of the study site (Table

4; Figure 1). The NN method performed about as well

as the SP method yet was able to produce maps of

much higher quality (Table 4; Figure 1). Visual

inspection of the predictive maps shows that NN

interpolation produced the best likeness of the initial

site (Figures 1, 2). Although the more intricate details

of the habitat patches are lost, the overall structure,

size, and location are conveyed. The NN interpolations

were the most accurate for both depth and substrate

when input data from 2.5% and 5.0% of the study site

were used. As noted above, we also obtained

interpolations based on 10, 20, 40, and 80% of the

data; the resulting trend curves showed that the greatest

gain in accuracy was achieved by expanding the input

data from 2.5% to 5% (Figures 3, 4).

Substrate Interpolation

Natural neighbor interpolation returned the highest

matched results (61% exact coordinate and 79% area

match) when comparing the predicted values of

substrate with the actual site values (Table 4). The

values of the RMSE (Table 5), percent exact match,

and percent area match (Table 4) were also best with

NN interpolation. Both the NN and SP interpolations

typically showed less than a 5% difference between the

actual and predicted values when the models were

separated by substrate type (Table 6).

The trend curves for the exact point and percent area of

the site predicted correctly show that the gains in accuracy

decreased markedly when data for more than 20% of the

site (452 of 2,268 points) were used (Figure 4). The

majority of the gains for exact (61%) and area match

(79%) were achieved by the 5% interpolation; the

remaining 39% and 21% were achieved only by adding

the remaining data points. The RMSE values for substrate

(Table 5) depict varying levels of difference between the

different types of interpolation. The best performing

method in comparison to the 0.039 RMSE value of the

actual site was the NN method for 2.5% interpolations.

Universal kriging produced the closest among 5.0%

interpolations, followed closely by the NN method.

Depth Interpolation

The NN depth interpolations most accurately

predicted the actual coverage of the study site (Figures

FIGURE 2.—Maps of the water depth at Aaron’s Creek as determined by detailed measurements and as interpolated by the

methods indicated in the caption to Figure 1.
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2, 5); both the 2.5% and 5.0% NN interpolations

outperformed all other methods (Figure 5). For the NN

interpolations based on 5% of the depth measurements

(59 data points), 57% of the interpolated depths were

within a 5% threshold (3 cm) of the actual values, 83%

percent within 10% (6 cm), and 95% within 20% (12

cm). There was lower accuracy in the values

interpolated from 2.5% of the depth measurements;

49% of these values were within a 5% threshold, 71%

within 10%, and 93% were within 20%. The least

accurate interpolation was that of the spline, which

attained an accuracy of only 79% for the most liberal

FIGURE 3.—Accuracy trend curves for substrate interpolations by the natural neighbor (NN) method using 2.5, 5, 10, 20, 40,

and 80% of the data available for the study site at Aaron’s Creek. The upper curve shows the percentage of the areal predictions

that matched the actual site; the lower curve shows the percentage of exact substrate coordinates (x, y) that matched the actual

site. The numbers above the bars are the actual bar values.

FIGURE 4.—Accuracy trend curves for depth interpolations by the natural neighbor method using 2.5, 5, 10, 40, and 80% of the

data available for the study site at Aaron’s Creek. The numbers above the bars are the actual bar values. Curves represent the

percentage of predicted points within 5 (3 cm), 10 (6 cm), and 20 (12 cm) of actual site values.
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threshold. The trend curve indicated that more than

90% of all predictions were within 12 cm of actual

depth for all NN interpolations, including those made

by the 2.5% model.

Discussion

Interpolation methods using small amounts of field

data produced accurate maps of stream habitat

variables. With minimal-data interpolation methods,

we created accurate maps of stream habitat using data

from as little as 5% of the available study area (Figures

1, 2). The NN interpolation method worked better than

the others because it can effectively deal with large and

clustered (autocorrelated) data sets. Spatial autocorre-

lation is a well-documented issue for geospatial studies

(Henebry and Merchant 2002; Liebhold and Gurevitch

2002) and contributes to predictability and accuracy in

ecological mapping and prediction methods (Klute et

al. 2002; Rotenberry et al. 2002), including habitat

interpolation methods (Robertson 1987). This is

particularly true in stream habitats in which proximate

areas are more similar than distant areas, such as with

the common stream characteristics of substrate and

depth (Leopold and Maddock 1953; Knighton 1998;

Powell 1998; Ferguson 2003).

The prediction of silt in our study is representative of

NN interpolation’s performance with respect to the key

point selection process. Silt was the least common

substrate type in the stream reach, representing only

1.25% of the actual area of the site. This is a negligible

amount that may be missed entirely by macrohabitat-

scale measurements alone. The key point selection

system allowed for the proper placement of silt on

predictive maps by NN interpolation (Figures 1, 2).

This shows that NN interpolation may overestimate

sparsely occurring substrate and underestimate the

most prevalent substrate while maintaining overall site

integrity.

As shown by the trend analysis, a larger number of

initial data points will increase the accuracy of the

interpolated data. However, the majority of the gains in

accuracy were achieved by using 5% of the area of the

site instead of 2.5%. Further research should examine

in more detail the threshold scale that relates sample

size with accuracy (Host et al. 1995; Winkler and Fang

1997) and the related cost–benefit function. Important-

ly, this relationship is expected to differ with habitat

complexity. Interpolation of stream habitat within

homogeneous pools would probably require a smaller

initial sample size than interpolation of riffle habitats.

At a larger scale, interpolation of habitat for stream

sections with a high pool : riffle ratio would probably

require a smaller sample size than one with a complex,

high-gradient profile (Kiem and Skauset 2002).

This study was conducted on a low-order, low-

gradient system, and additional studies are needed for

larger and higher-gradient systems. The potential

versatility of the method that we used lies as much in

the point selection process as in NN interpolation. The

TABLE 5.—Root mean square errors of substrate interpola-

tions by the ordinary kriging (OK), inverse distance weighted

(IDW), universal kriging (UK), natural neighbor (NN) and

spline (SP) methods. Based on actual values, the study site had

a substrate dispersion rate of 0.039. The estimated dispersion

rates produced by UK and NN were the closest to that of the

study site.

Interpolation method

Available data

2.50% 5.00%

OK 0.002 0.016
IDW 0.022 0.028
UK 0.025 0.040
NN 0.030 0.036
SP 0.072 0.143

TABLE 6.—Percentages of substrate type predicted by the inverse distance weighted (IDW), natural neighbor (NN), ordinary

kriging (OK), spline (SP), and universal kriging (UK) methods using 2.5% and 5.0% of the data available, along with the actual

percentages.

Interpolation method (% data) Land Silt Sand Gravel Cobble Boulder

IDW (2.5) 3 14 29 30 23 2
IDW (5.0) 5 18 22 19 32 4
NN (2.5) 15 12 23 21 22 4
NN (5.0) 17 5 18 13 25 20
NN (2.5) 16 12 23 22 23 4
NN (5.0) 17 5 19 13 26 20
OK (2.5) 0 3 44 41 12 0
OK (5.0) 0 1 15 43 38 4
SP (2.5) 22 16 14 11 12 25
SP (5.0) 20 8 14 14 20 23
UK (2.5) 7 15 31 27 20 0
UK (5.0) 13 6 18 25 33 5
Actual 20 2 21 7 27 23
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method is designed to deal with habitat patches and

deposition pattern. The point selection process may

require adjustment in the number of points for

acceptable accuracy in high-gradient or highly hetero-

geneous streams.

As stated in the introduction, the assessment of

habitat is immensely important to the management and

conservation of fish (Thayer et al. 1996; Noss et al.

1997; Orth and White 1999; Kohler and Hubert 1999).

Further, the technology to convert habitat data into

accurate and practical maps is increasingly important to

aquatic species management (Meaden and Do Chi

1996; Smith and Greenhawk 1998; Manson and Todd

2000; Kostylev et al. 2001; Fisher and Rahel 2004).

Our findings show that accurate habitat assessments

can be based on interpolation from as little as 5% of the

total habitat area, which should markedly decrease the

costs associated with such assessments.

One possible extension of habitat interpolation

methods is the use of interpolated maps to predict

species occurrence (Rubec et al. 1998; Scott et al.

2001). Although we focused on depth and substrate,

stream maps could also include other habitat attributes,

such as water chemistry, velocity, and food sources,

which together would allow the prediction of species

occurrence based on species’ habitat requirements.

This use of interpolated maps will benefit ecosystem

and rare-species management, particularly when habitat

loss or habitat specificity is an important management

concern.
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meaning that 83% of all points were within 6 cm of the actual values.
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