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A large number of methods for the analysis of point pattern data have been developed
in a wide range of scientific fields. First-order statistics describe large-scale variation in
the intensity of points in a study region, whereas second-order characteristics are
summary statistics of all point-to-point distances in a mapped area and offer the
potential for detecting both different types and scales of patterns. Second-order
analysis based on Ripley’s K-function is increasingly used in ecology to characterize
spatial patterns and to develop hypothesis on underlying processes; however, the full
range of available methods has seldomly been applied by ecologists. The aim of this
paper is to provide guidance to ecologists with limited experience in second-order
analysis to help in the choice of appropriate methods and to point to practical
difficulties and pitfalls. We review (1) methods for analytical and numerical
implementation of two complementary second-order statistics, Ripley’s K and the O-
ring statistic, (2) methods for edge correction, (3) methods to account for first-order
effects (i.e. heterogeneity) of univariate patterns, and (4) a variety of useful standard
and non-standard null models for univariate and bivariate patterns. For illustrative
purpose, we analyze examples that deal with non-homogeneous univariate point
patterns. We demonstrate that large-scale heterogeneity of a point-pattern biases
Ripley’s K-function at smaller scales. This bias is difficult to detect without explicitly
testing for homogeneity, but we show that it can be removed when applying methods
that account for first-order effects. We synthesize our review in a number of step-by-
step recommendations that guide the reader through the selection of appropriate
methods and we provide a software program that implements most of the methods
reviewed and developed here.

T. Wiegand, Dept of Ecological Modelling, UFZ-Centre for Environmental Research, PF
500136, DE-04301 Leipzig, Germany (towi@oesa.ufz.de). �/ K. A. Moloney, Dept of
Botany, 143 Bessey Hall, Iowa State Univ., Ames, Iowa 50011-1020, USA.

Over the last decade, there has been an increasing

interest in the study of spatial patterns in ecology

(Turner 1989, Levin 1992, Grimm et al. 1996, Gustafson

1998, Dale 1999, Liebhold and Gurevitch 2002). Ecol-

ogists study spatial pattern to infer the existence of

underlying processes (Perry et al. 2002). For example,

spatial patterns of plants may result from different

processes and forces such as seed dispersal, intraspecific

competition, interspecific competition, disturbance, her-

bivory, or environmental heterogeneity (Sterner et al.

1986, Kenkel 1988, Barot et al. 1999, Dale 1999, Jeltsch

et al. 1999, Klaas et al. 2000), which may operate at

different spatial scales. Analysis of the resulting spatial

structure can indicate the existence of underlying
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processes, e.g. identification of regularity within a spatial

pattern may indicate competition. However, care is

required in inferring causation because many different

processes may generate the same spatial pattern.

An important example of a spatial pattern is a point

pattern, a data-set consisting of a series of mapped point

locations in some study region. A number of methods

have been used for quantifying the characteristics of

point patterns (Ripley 1981, Diggle 1983, Upton and

Fingleton 1985, Stoyan and Stoyan 1994, Bailey and

Gatrell 1995, Dale 1999, Dale et al. 2002). First-order

statistics describe the intensity l of a point pattern, and

large-scale variation in the intensity l of the points in the

study region. In contrast, second-order statistics are

based on the distribution of distances of pairs of points

(Ripley 1981) and they describe the small-scale spatial

correlation structure of the point pattern. Some of the

second-order statistics, such as the commonly used

Ripley’s K-function or the pair-correlation function g,

use the information on all inter-point distances (Ripley

1976, 1977, 1981, Diggle 1983, Bailey and Gatrell 1995)

and provide more information on the scale of the pattern

than do statistics that use nearest neighbor distances

only (i.e. Diggle’s nearest neighbor functions G or F;

Diggle 1983, Barot et al. 1999). Ripley’s K function and

the pair-correlation function describe the characteristics

of the point pattern over a range of distance scales, and

can therefore detect mixed patterns (e.g. dispersion at

smaller distances and aggregation at larger distances).

This is an important property because virtually all

ecological processes are scale dependent and their

characteristics may change across scales (Levin 1992,

Wiens et al. 1993, Gustafson 1998). Over the last several

years, methods based on Ripley’s K-function have

undergone a rapid development (Haase 1995, Podani

and Czárán 1997, Coomes et al. 1999, Goreaud and

Pélissier 1999, Dale and Powell 2001, Haase 2001,

Pélissier and Goreaud 2001, Dungan et al. 2002, Free-

man and Ford 2002, Perry et al. 2002) and are now being

widely used, especially in plant ecology (Haase et al.

1996, 1997, Ward et al. 1996, Martens et al. 1997, Hanus

et al. 1998, Larsen and Bliss 1998, Pancer-Koteja et al.

1998, Wiegand et al. 1998, 2000, Barot et al. 1999, Chen

and Bradshaw 1999, Coomes et al. 1999, Jeltsch et al.

1999, Mast and Veblen 1999, Kuusinen and Penttinen

1999, Bossdorf et al. 2000, Camarero et al. 2000, Condit

et al. 2000, Grau 2000, He and Duncan 2000, Kuulu-

vainen and Rouvinen 2000, Lookingbill and Zavala

2000, Haase 2001, Fehmi and Bartolome 2001). Some

examples can be found in other fields of ecology as well

(O’Driscoll 1998, Wiegand et al. 1999, Klaas et al. 2000,

Schooley and Wiens 2001, Revilla and Palomares 2002).

The function K(r) is the expected number of points in

a circle of radius r centered at an arbitrary point (which

is not counted), divided by the intensity l of the pattern.

The alternative pair correlation function g(r), which

arises if the circles of Ripley’s K-function are replaced by

rings (Ripley 1981, Stoyan and Stoyan 1994, Stoyan and

Penttinen 2000, Dale et al. 2002), gives the expected

number of points at distance r from an arbitrary point,

divided by the intensity l of the pattern. Of special

interest is to determine whether a pattern is random,

clumped, or regular. Significance is usually evaluated by

comparing the observed data with Monte Carlo envel-

opes from the analysis of multiple simulations of a null

model. The common null model is complete spatial

randomness (CSR), but other null models may be

appropriate depending on the biological question asked.

Points in a point-pattern may contain information in

addition to position, often referred to as marks (e.g. a

species identifier, a life stage identifier, or whether the

individual survived or died), and many biological ques-

tions concern the relationship between points with

different marks (e.g. facilitation or competition among

adult trees and seedlings, or shrubs and grasses).

Bivariate extensions of Ripley’s K and the pair-correla-

tion function provide appropriate methods to address

such questions.

Practical difficulties and pitfalls in univariate analysis

arise due to edge effects (i.e. sample circles or rings fall

partly outside the study region and cannot be evaluated

without bias) or if the pattern is not homogenous (i.e.

the intensity l of the pattern is not approximately

constant in the study region). Any spatial dependence

that is indicated by the estimated K function of a

heterogeneous pattern could be due more to first-order

effects rather than to interaction between the points

themselves. In this case a null model that acknowledges

the overall first-order heterogeneity has to be adopted to

examine possible second-order effects. Alternatively, one

may examine homogeneous sub-regions of the hetero-

geneous pattern. The latter requires methods to delineate

homogeneous sub-regions that may be in general

arbitrarily shaped, and methods of edge correction for

arbitrarily shaped study regions. The analysis of bivari-

ate point patterns is more complicated than that of

univariate patterns because various other null models in

addition to CSR become possible. The appropriate null

model for bivariate analysis must be selected carefully

based on the biological hypothesis to be tested.

In this article, we review current methods in point

pattern analysis based on second-order statistics and

address practical difficulties and pitfalls of this techni-

que. More specifically, we suggest the use of the O-ring

statistic as useful complement to the commonly used

Ripley’s K-function, we review methods for (1) edge

correction, (2) analytical and numerical implementation

of second-order statistics, (3) delineating homogeneous

sub-regions, and we thoroughly discuss null models for

univariate and bivariate point patterns. For illustrative

purpose, we show several examples that deal with non-

homogeneous univariate patterns, and as synthesis of
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our article we compile a set of step-by-step recommen-

dations that guide through the explorative process of

second-order statistics. Additionally we provide our own

software that enables ecologists to use most methods

reviewed here. It can be requested from the first author.

Methods

Ripley’s K-function and the O-ring statistic

For a homogeneous and isotropic point pattern, the

second-order characteristics depend only on distance r,

but not on the direction or the location of points. An

appropriate geometry is therefore to adopt circular

shapes, such as the circles of Ripley’s K-function, as a

basis for the spatial statistics. Curiously, the alternative

approach of using rings (or annulus) instead of circles,

i.e. the pair-correlation function g(r) or the O-ring

statistic O(r)�/lg(r) (Wiegand et al. 1999), has rarely

been used in ecology (but see Galiano 1982, Wiegand et

al. 2000, Condit et al. 2000, Revilla and Palomares

2002). Using rings instead of circles (Fig. 1) has the

advantage that one can isolate specific distance classes,

whereas the cumulative K-function confounds effects at

larger distances with effects at shorter distances (Getis

and Franklin 1987, Penttinen et al. 1992, Condit et al.

2000). Note that the K-function and the O-ring statistic

respond to slightly different biological questions. The

accumulative K-function can detect aggregation or

dispersion up to a given distance r and is therefore

appropriate if the process in question (e.g. the negative

effect of competition) may work only up to a certain

distance, whereas the O-ring statistic can detect aggrega-

tion or dispersion at a given distance r. The O-ring

statistic has the additional advantage that it is a

probability density function (or a conditioned probabil-

ity spectrum, Galiano 1982) with the interpretation of a

neighborhood density, which is more intuitive than an

accumulative measure (Stoyan and Penttinen 2000). We

therefore argue that the toolbox of second-order spatial

analysis should include not only the cumulative K-

function, but also the complementary O-statistic.

Ripley’s K-function

The bivariate K-function K12(r) is defined as the

expected number of points of pattern 2 within a given

distance r of an arbitrary point of pattern 1, divided by

the intensity l2 of points of pattern 2:

l2K12r�E[#(points of pattern 25r

from an arbitrary point of pattern 1)] (1)

where # means ‘‘the number of’’, and E[ ] is the

expectation operator. Under independence of the two

point patterns, K12(r)�/pr2, without regard to the

individual univariate point patterns. It can be difficult

to interpret K12(r) visually. Therefore, a square root

transformation of K(r), called L-function (Besag 1977),

is used instead:

L12(r)�
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

K12(r)

p

s
�r

�
(2)

This transformation removes the scale dependence of

K12(r) for independent patterns and stabilizes the

variance (Ripley 1981). Values of L12(r)�/0 indicate

that there are on average more points of pattern 2 within

distance r of points of pattern 1 as one would expect

under independence, thus indicating attraction between

the two patterns up to distance r. Similarly, values of

L12(r)B/0 indicate repulsion between the two patterns up

to distance r. The estimated L-function L̂12(r) is calcu-

lated for a sequence of distances r and the results of

L̂12(r) are then plotted against distance.

Theoretically, distribution theory could be used in

determining confidence envelopes for null models of

point-patterns. However, this approach quickly becomes

analytically intractable if edge effects for irregularly

shaped study regions are considered, or if null models

other than CSR are considered. Therefore, the more

practical alternative is to use Monte Carlo simulations of

a realization of the stochastic process underlying the

specific null model in constructing confidence envelopes

around the null model (Upton and Fingleton 1985,

Bailey and Gatrell 1995). Each simulation generates an

L̂12(r) function, and approximate n/(n�/1)�/100% con-

fidence envelopes are calculated from the highest and

lowest values of L̂12(r) taken from n simulations of the

null model. For example, a 95% confidence envelope

requires n�/19 simulations (Bailey and Gatrell 1995,

Fig. 1. Numerical implementation of the L- function and the
O-ring statistic for an irregularly shaped study region encircled
by the dashed line. Points of pattern 2 are represented by closed
circles, the focal point i of pattern 1 as open circle. Note that we
approximate circles and rings with the underlying grid structure.
(A) For numerical implementation of Ripley’s bivariate L-
function we count the number of points of pattern 2 inside the
part of the circles around point i of pattern 1 which falls inside
the study region (i.e. the gray shaded area), and the number of
cells within this area. (B) For implementation of the bivariate O-
ring statistic we count the number of points of pattern 2 inside
the part of the ring around point i of pattern 1 which falls inside
the study region (i.e. the gray shaded area), and the number of
cells within this area.
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Haase 1995, Martens et al. 1997). A more accurate

approach is to use the 5th-lowest and 5th highest L̂12(r):
In this case, 99 randomizations provide 5% confidence

envelopes (Stoyan and Stoyan 1994, Wiegand et al.

2000). If L̂12(r) has some part outside of that envelope, it

is judged to be a significant departure from the null

model.

The univariate K-function K(r) is calculated in a

manner analogous to the bivariate K function by setting

pattern 1 equal to pattern 2. In this case the focal points

of the circles are not counted. For a homogeneous

Poisson process (complete spatial randomness CSR),

K(r)�/pr2 and L(r)�/0. L(r)�/0 indicates aggregation of

the pattern up to distance r, while L(r)B/0 indicates

regularity of the pattern up to distance r.

The O-ring statistic

The mark-correlation function g12(r) is the analogue of

Ripley’s K12(r) when replacing the circles of radius r by

rings with radius r, and the O-ring statistic O12(r)�/l2

g12(r) gives the expected number of points of pattern 2 at

distance r from an arbitrary point of pattern 1 (Fig. 1B):

O12(r)�l2g12(r)�E[#(points of pattern 2

at distance r from an arbitrary

point of pattern 1)] (3)

The mark-correlation function g12(r) is related to

Ripley’s K-function (Ripley 1981, Stoyan and Stoyan

1994):

g12(r)�
dK12(r)

dr =(2pr) (4)

We obtain O12(r)�/l2 for independent patterns,

O12(r)B/l2 for repulsion, whereas O12(r)�/l2 for attrac-

tion.

In practice, the calculation of the O-ring statistic

involves a technical decision on the width of the rings.

Clearly, the use of rings that are too narrow will produce

jagged plots as not enough points will fall into the

different distance classes. This problem does not occur

for the accumulative K-functions. On the other hand, the

O-ring statistic will lose the advantage that it can isolate

specific distance classes if the rings are too wide.

Again, the univariate O-ring statistic O(r) is calculated

by setting pattern 2 equal to pattern 1. For CSR, O(r)�/

l, O(r)�/l indicates aggregation of the pattern at

distance r, and O(r)B/l regularity.

Edge correction

Edge effects may arise in calculating point-pattern

statistics due to the fact that data points lying outside

the study region (ones that could potentially influence

the pattern inside the study region) have not been

sampled and are unknown. This means that sample

circles or rings used in calculating point-pattern statistics

may fall partially outside the study region and will

produce a biased estimate of the point-pattern unless a

correction is applied. One method used to avoid edge

effects is to sample an additional buffer zone, with width

r equal to the largest scale used in the analysis,

surrounding the main study area. Only points lying

inside the main study area are utilized as centers in

calculating the point-pattern statistics (Haase 1995).

Clearly, the shortcoming of this method is that only

the points within the inner plot can be analyzed and for

large scales a large buffer zone must be utilized. For

rectangular study regions, a second method using a

toroidal edge correction can be employed to avoid edge

effects. This involves replicating the observed pattern

eight times and then surrounding the original pattern

with the eight copies to form a 3�/3 array (Ripley 1979,

1981, Upton and Fingleton 1985, Haase 1995). The

justification of toroidal edge correction is that the

observed rectangle represents a random sample of all

the rectangles that may have been observed, and there-

fore the best guess on the appearance of the adjacent

rectangles is that they look identical to the sampled

rectangle (Upton and Fingleton 1985). Utilizing a buffer

zone or toroidal edge correction is only necessary if the

degree of edge in the analysis is high and a large

proportion of the area sampled around focal points lies

outside the main study area, e.g. for transect data or

small plots (Haase 1995). However, if most of the area

sampled around focal points falls within the study area,

a third form of edge correction, employing a weighting

that corrects for the proportion of the sample area lying

outside the study area, can be utilized as explained below

(Ripley 1981, Bailey and Gatrell 1995, Haase 1995,

Goreaud and Pélissier 1999).

Analytical and numerical implementation

There are basically two approaches to estimate K12(r)

and O12(r) from the data: an analytical approach, and a

numerical approach. Analytical approaches use geo-

metric formulas to calculate weights that correct for

the area of the circles lying outside the study region

(Haase 1995, Goreaud and Pélissier 1999), whereas

numeric approaches use an underlying grid of cells for

implementation of Eq. 1 and 3 and do not require edge

correction.

Analytical approach.

The common analytical estimator for K12(r) was pro-

posed by Ripley (1976, 1981). It is based on all distances

dij between the ith point of pattern 1 and the jth point of

pattern 2 and is given by:
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K̂12(r)�
A

n1n2

Xn1

i�1

Xn2

j�1

Ir(dij)

wij

(5)

where n1 and n2 are the number of points of pattern 1

and 2, respectively, A is the area of the study region, Ir is

a counter variable [Ir(dij) �/1 if dij5/r, and Ir(dij)�/0

otherwise], and wij is a weighting factor to correct for

edge effects. The weight wij is the proportion of the area

of a circle centered at the ith point of pattern 1 with

radius dij that lies within the study region. For example,

if only half of the circle falls in the study region, Eq. 5

counts effectively two points for each point encountered

in the incomplete circle. This edge correction is based on

the assumption that the region surrounding the study

region has a point density and distribution pattern

similar to the nearby areas within the boundary (Getis

and Franklin 1987, Haase 1995) and is in some ways

analogous to a toroidal edge correction. Because a point

close to the border of the study region is weighted more

than a point far away from the border, K̂12(r) may be

biased for larger r if narrow and long study regions are

analyzed (e.g. transects). The common rule of thumb to

avoid this effect is that one should not go to a lag

distance longer than half the narrowest dimension. The

analytical estimator of the mark-correlation function

g12(r) is the analogue to Eq. 5, but the counter variable

must account for a ring with width w: Ir
w(dij)�/1 if r�/w/

25/dij5/r�/w/2 and Ir(dij)�/0 otherwise.

Precise formulas of wij depend on the shape of the

study region and on the location of point i in relation to

the boundaries. The derivation of analytical formulas for

wij sometimes requires quite complex algorithms and can

be computationally intensive. Ripley (1982), Haase

(1995), and more recently Goreaud and Pélissier (1999)

reviewed current formulas for edge correction of Ripley’s

K. Because of the complexity of analytical formulas of

wij, mostly simple circular or rectangular study regions

have been used for experimental plots. However, shapes

that are more complex are sometimes necessary because

of obstacles in the study site, or it may be necessary to

omit some parts of a heterogeneous study region to

obtain a homogeneous pattern. The shape of the final

study region can thus be very complex. Only recently,

Goreaud and Pélissier (1999) proposed a general method

to deal analytically with study regions of complex shape,

by excluding triangular surfaces from rectangular or

circular initial shapes.

Numerical approach

Numerical methods require division of the study region

into a grid of cells (Fig. 1). Selection of an appropriate

cell size is constrained by the sampling error of the

coordinates of the points that defines a minimum cell

size, and by computational time for larger grids. A

resolution coarser than the sampling error can be

selected; this will depend on the minimum resolution

of distance classes necessary for responding to the

scientific question.

A numerical estimator of K12(r) could determine the

weights of Eq. 5 by using the underlying grid. However,

the numerical method allows for a slightly different

approach that does not ‘‘look’’ outside the study region

and therefore does not require edge correction.

This can be achieved by dividing the mean number of

points within circles by the mean area of these circles,

but counting only points and area inside the study

region:

l2K̂12(r)�pr2

1

n1

Xn1

i�1

Points2[Ci(r)]

1

n1

Xn1

i�1

Area[Ci(r)]

(6)

Ci(r) is the circle with radius r centered on the ith point

of pattern 1, n1 the total number of points of pattern 1 in

the study region, the operator Points2[X] counts the

points of pattern 2 in a region X, and the operator

Area[X] determines the area of the region X. To

implement Eq. 6 we marked each cell (x, y) with an

identifier S(x, y) [S(x, y)�/1 if the cell with coordinates

(x, y) is inside the boundaries of the study region,

otherwise S(x, y)�/0] and with two additional marks

P1(x, y) and P2(x, y) that give the number of points of

pattern 1 and pattern 2 lying within the cell, respectively.

Using these definitions, the numerator of Eq. 6 becomes:

Points2[Ci(r)]�
X
all x

X
all y

S(x; y)P2(x; y)Ir(xi; yi; x; y) (7)

where (xi, yi) are the coordinates of the ith point of

pattern 1, and the counter variable Ir defines the circle

with radius r that is centered at the ith point of pattern 1:

Ir(xi; yi; x; y) �
1 if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x�xi)

2 �(y�yi)
2

q
5r

0 otherwise

8><
>: (8)

The denominator of Eq. 6 is calculated analogously to

Eq. 7, but it counts cells instead of points:

Area[Ci(r)]�z2
X
all x

X
all y

S(x; y)Ir(xi; yi; x; y) (9)

where z2 is the area of one cell. Because Eq. 7 and 9

include the identifier S(x, y) of the study region, only

points and cells are counted that are inside the bound-

aries of the study region. Therefore, the study region can

be of any complex shape accommodated by the under-

lying grid. Using Eq. 6, our numerical estimator of the

L-function is given by:
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L̂12(r)�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K12(r)

p

s
�r�r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

l2

�l2K12(r)

p r2

�s
�1

�

�r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

n2

�Xn1

i�1

Points2[Ci(r)]

Xn1

i�1

Area[Ci(r)]

�vuuuuuuut �1

�
(10)

where A is the area of the study region, and n2 the

number of points of pattern 2 inside the study region.

The analogous numerical estimate for the bivariate O-

ring statistic is:

Ô
w

12(r)�

Xn1

i�1

Points2[R
w
i (r)]

Xn1

i�1

Area[Rw
i (r)]

(11)

where Ri
w(r) is the ring with radius r and width w

centered in the ith point of pattern 1. The numerator and

the denominator and of Eq. 11 are the same as given in

Eq. 7 and 9, respectively, but the counter variable Ir for

circles has to be replaced by a counter variable Ii
w that

defines a ring with radius r and width w around the ith

point with coordinates (xi, yi):

Iw
r (xi; yi; x; y)�

1 if r�
w

2
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x�xi)

2�(y�yi)
2

q
5r�

w

2

0 otherwise

8><
>:

(12)

Methods for delineating homogeneous sub-regions

Analysis of heterogeneous point patterns is difficult

because most methods related to Ripley’s K-function

have been developed for homogeneous point patterns.

The classical exploratory approach for univariate point

patterns is to compare a given point pattern to the null

model of a homogeneous Poisson process which gen-

erates patterns consistent with complete spatial ran-

domness (CSR). However, for heterogeneous patterns

this null model is not appropriate because first-order

effects may interfere with second-order effects. In the

examples section (‘‘Virtual aggregation and bias in the

univariate L-function’’) we show e.g. that analysis of

univariate point patterns with larger gaps (i.e. areas

without points or with a low density of points) can lead

to severe misinterpretation of the spatial structure of the

pattern if the null model is CSR. In the case of

heterogeneous patterns, CSR might be represented by a

heterogeneous Poisson process, a Cox process, or a

Poisson cluster process (Diggle 1983, Upton and Fin-

gleton 1985, Bailey and Gatrell 1995). However, the

corresponding mathematical tools for analytical imple-

mentation of these null models are complicated (Batista

and Maguire 1998, Pélissier and Goreaud 2001). One

possibility to retain the methods for homogeneous

patterns for the analysis of heterogeneous patterns is to

define homogeneous sub-regions and to analyze the

spatial structure within these separately (Pélissier and

Goreaud 2001). This requires methods for delineating

irregularly shaped sub-regions within heterogeneous

patterns, or methods for detection of clusters or gaps

in point patterns.

Dale and Powell (2001) presented an approach for

detecting gaps and clusters in point patterns that is

closely related to Ripley’s K-function. They did not

center the circles on points of the pattern (as is done

when calculating the K-function), but on circles that go

through all three points of any trio of points in the map

(circumcircle method). Circles that include large gaps

will have many fewer observed than expected points and

the circles that neatly enclose patches will have many

more than expected (Dale and Powell 2001). Another

method to detect and measure clusters in spatially

referenced count data was presented in Perry et al.

(1999). This method works through equating the degree

of spatial pattern in an observed arrangement of counts

to the minimum effort that the individuals in the

population would need to expend to move to a

completely regular arrangement in which abundance

was equal in each sample unit. In practice, this effort is

equated with the minimum distance required to move to

complete regularity (Perry et al. 1999).

A simple exploratory approach that tests for homo-

geneity relies on the fact that the number of points in

plots of size W of homogeneous point patterns follows a

Poisson distribution. For a point pattern with intensity l
a test for homogeneity involves comparison of the

estimated frequency distribution P̂k(lW) [of finding k

points in an arbitrary plot of size W] with the expected

frequency distribution under homogeneity, a Poisson

distribution

Pk(lW)�
(lW)k

k!
e�lW (13)

with mean lW. Depending on the kind of heterogeneity,

there are different possibilities to use a combined

analysis of expected and estimated frequency distribu-

tion together with an estimate of the first-order intensity

for delineation of homogeneous sub-regions. We discuss

two cases of simple heterogeneity.

Detecting a mixture of two Poisson processes

If a point pattern comprises two internally homogeneous

sub-regions with different intensities, the estimated
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frequency distribution will show two overlapping peaks

(Fig. 2A). Pélissier and Goreaud (2001) proposed visual

inspection of P̂k(lW) to find the critical value of k

(�/ksep) that separates both Poisson distributions. In a

next step, they used spatial interpolation techniques to

approximate the heterogeneous first-order intensity l
and constructed contour lines with the critical intensity

lsep�/ksep/W to delineate the two homogeneous sub-

regions.

Detecting gaps

If the point pattern is internally homogeneous but

contains a gap (i.e. a larger region with low density of

points), a plot of size W may be part of the gap if it

contains less points than one would expect under

homogeneity. The minimal number of points kmin in

the plot that would be still probable under homogeneity

can be estimated by accumulating the ‘‘left tail’’ of the

expected Poisson distribution until a small value p0 is

reached:

Xkmin�1

k�0

Pk(lW)5p0 and
Xkmin

k�0

Pk(lW)�p0
(14)

Thus, there is only a probability p0 that a plot of size W

contains fewer than kmin points, and a plot that contains

B/kmin points is probably part of a gap. An estimate of

the first-order intensity l(x, y), and contour lines with

lmin�/kmin/W can then be used to separate the gaps

from the homogeneous region. Theoretically, this ap-

proach does not require an estimate of P̂k(lW); but in

practice, P̂k(lW) is needed as an exploratory tool (see

examples section ‘‘Delineating homogeneous sub-

regions’’). Note that this approach can be applied

analogously for detecting clusters. In this case, one has

to consider the upper tail of the Poisson distribution

instead of the lower tail.

Implementation

Formal statistical tests of the estimated frequency

distribution P̂k(lW) against its theoretical distribution

require independence of the sample (i.e. non-overlapping

plots) for estimation of P̂k(lW): Because we aim to

remove larger-scale variation in the intensity l(x, y) we

will tend to select larger plot sizes W. On the other hand,

larger non-overlapping plots will produce smaller sample

sizes, which can be a problem if the study region is small.

A pragmatic, but less rigorous, approach for exploratory

analysis is the use of overlapping plots. However,

this requires some methods to account for non-

independence. For example, Pélissier and Goreaud

(2001) proposed to use a buffer zone between the two

homogeneous sub-regions to account for unclear transi-

tion between the dense and sparse parts of the study

region.

The numerical approach suggests a simple estimator

of the non-constant first-order intensity l(x, y):

l̂R
(x; y)�

Points[C(x;y)(R)]

Area[C(x;y)(R)]
(15)

where C(x, y)(R) is a circular moving window with radius

R that is centered in cell (x, y). This is basically a kernel

estimate with fixed bandwidth R (Diggle 1985, Bailey

and Gatrell 1995). As edge correction, the number of

points in an incomplete circle is divided by the propor-

tion of the area of the circle that lies within the study

region. Using Eq. 15 has the advantage that a fitting

procedure for contour lines is not required, and the

moving window procedure can easily be performed for

several spatial scales R.

A rigorous method for detecting gaps would place e.g.

adjacent (rectangular) plots over the study region and

remove all plots containing fewer points than kmin.

Fig. 2. Delineating homogeneous sub-regions for cases of
simple heterogeneity. (A) Two sub-regions with different first-
order intensities ll and lh (ll�/0.01, lh�/0.05) of equal size.
The broken line shows the expected frequency distribution of
the number of points in plots of size W under overall
homogeneity, and the solid line the frequency distribution
resulting from the mixture of the two Poisson processes. The
arrow indicates the value of ksep that separates the two sub-
regions (Pélissier and Goreaud 2001). (B) Homogeneous pattern
with a gap. The solid line shows the frequency distribution that
results from a homogeneous pattern with lhom�/0.03 that
contains a gap covering 12.5% of the study region. The broken
line shows the expected frequency distribution under overall
homogeneity (l�/0.026). Under a homogeneous pattern with
l�/0.026, circles of size W�/500 would contain 5 or less points
with probability 0.009, thus kmin�/6 for p0�/0.01.
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However, the plot size W must be sufficiently large,

otherwise gaps cannot be distinguished from empty plots

that would occur under homogeneity with a probability

P0(lW). Equation (14) can be used to calculate the plot

size Wmin for which empty plots will occur with (a low)

probability p0:

Pk�0(lW)�e�lWmin �p0 which yields Wmin

��ln(p0)=l (16)

Non-overlapping plots of area W�/Wmin will make the

delineation of gaps very coarse if the overall density l�/

n/A is low (n is the number of points in the study region

with area A). As a pragmatic alternative, we propose in

the examples section ‘‘Delineating homogeneous sub-

regions’’ a combined analysis of the estimated frequency

distribution P̂k and the moving-window estimate l̂R
of

l(x, y).

Null models

The keys for successful application of Ripley’s K-

function and the O-ring statistic are the selection of an

appropriate null model that responds to the specific

biological question asked, and correct interpretation of a

given departure of the data from the null model. One

approach to find an appropriate null model is based on

the mathematical form of K(r) and g(r), which are

known explicitly (or as an integral) for a number of

potentially useful classes of spatial point processes

(Ripley 1981, Diggle 1983, Upton and Fingleton 1985,

Bailey and Gatrell 1995, Dixon 2002). This is a two-stage

process. First, inspection of the estimated K̂(r) may

suggest plausible models for the underlying point

process, and the parameters that control the process

can be fitted through comparison of the expected and

estimated K-function (e.g. Diggle 1983, Batista and

Maguire 1998, Dixon 2002). Second, approximate con-

fidence envelopes for the K-function based on the fitted

models are constructed by Monte Carlo simulations of

the stochastic process with the parameter estimates

obtained by the fitting procedure. This approach has

mainly been adopted by statisticians interested in spatial

point processes, but the mathematical tools can be

complicated, especially for parameter fitting and correct-

ing edge effects. As a consequence, ecologists have

mostly used the simplest case only, the null model of

CSR (but see Diggle 1983, Batista and Maguire 1998).

The numerical approach facilitates simple implementa-

tion of a variety of null models that e.g. account for first-

order heterogeneity, or are adapted to specific biological

questions. Because there are fundamental differences

between the univariate and the bivariate case, we will

review null models separately for the univariate and the

bivariate case.

Null models for univariate point pattern
Complete spatial randomness

The simplest and most widely used null model for

univariate point patterns is complete spatial randomness

(CSR) that can be implemented as a homogeneous

Poisson process. Homogeneous means that the first-

order intensity l is constant over the study region (there

are no first-order effects), and Poisson means that the

probability of finding k points in an area W follows a

Poisson distribution with mean lW. Thus, any point of

the pattern has an equal probability of occurring at any

position in the study region, and the position of a point

is independent of the position of any other point (i.e.

points do not interact with each other). Due to practical

problems with edge correction, CSR has mostly been

applied in study regions of simple rectangular or circular

shape (but see Goreaud and Pélissier 1999). If a

homogeneous pattern is spatially restricted by obstacles

or environmental heterogeneity (e.g. differences in soil),

the appropriate null model is CSR, but applied only

within an irregularly shaped study region. In the

examples section ‘‘Virtual aggregation and bias in the

univariate L-function’’ we show that in this case

application of CSR in a rectangular study region that

encompasses the pattern can lead to severe misinterpre-

tation of the second-order structure of the pattern. If

appropriate software for edge correction of irregularly

shaped study regions is not available, smaller regularly

shaped sub-regions of the pattern have to be analyzed.

However, this may reduce the sample size considerably.

Note that the numerical approach (Eq. 7 and 9) can deal

with any irregularly shaped study region accommodated

by the underlying grid.

Heterogeneous Poisson process

If a pattern is not homogeneous, the null model of CSR

is not suitable for exploration of second-order charac-

teristics, and a null model accounting for first-order

effects has to be used to reveal ‘‘true’’ second-order

effects. The heterogeneous Poisson process is the sim-

plest alternative to CSR if the pattern shows first-order

effects. The constant intensity of the homogeneous

Poisson process is replaced by a function l(x, y) that

varies with location (x, y), but the occurrence of any

point remains independent of that of any other. The

intensity function l(x, y) determines the process com-

pletely, and numerical implementation of this null model

is a matter of finding an appropriate estimate of the

intensity function.

The numerical approach suggests a simple method to

implement the heterogeneous Poisson process using the

moving-window estimate l̂R
of the intensity function

l(x, y) (Eq. 15): a provisional point is placed at a

random cell (x, y) in the study area, but this point is only

retained with a probability given through l̂R
(x; y): This
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procedure is repeated until n points are distributed. The

moving window estimator l̂R
(x; y) involves a decision on

an appropriate radius R of the moving window. Because

the bandwidth R is the scale of smoothing, possible

departure from this null model may only occur for scales

rB/R, and for small moving windows it will closely

mimic the original pattern, whereas a large moving

window approximates CSR.

Note that there will always be a subjective component

involved in the decision as to whether or not, and at what

scales, the pattern is heterogeneous. In general, this

decision depends on spatial scale: as compared with the

size of the study region, fine-scale variations are

generally considered as elements of structure and

broad-scale variations as heterogeneity (Pélissier and

Goreaud 2001). In some cases, the nature of the data and

the strength of trends in the observed pattern may make

such judgment relatively straightforward. In other cases,

this may be difficult and open to debate and interpreta-

tion.

Typical biological situations for application of a

heterogeneous Poisson process are presence of exogen-

ous factors (e.g. soil, topography, rocks, etc.) or obstacles

that cause irregularly shaped study regions. In fact, a

simple variant of the heterogeneous Poisson process can

be used as alternative to avoid edge correction for

homogeneous point patterns in irregularly shaped study

regions: the intensity l(x, y) is zero outside the study

region and constant inside.

Random labeling

Random labeling is a somewhat different approach to

correct for underlying environmental heterogeneity that

can be used where a ‘‘control’’ pattern is available to act

as surrogate for the varying environmental factor. The

assumption of univariate random labeling is that the

pattern of controls was created by the same stochastic

process as the primary pattern (‘‘cases’’). Therefore, the

n1 cases represent a random sub-sample of the joined

pattern of the n2 control points and n1 case points. The

test is devised by computing the univariate K-function

for the observed cases, then randomly re-sampling sets

of n1 points from the (n1�/n2) points of the cases and

controls to generate the confidence limits. Note that this

null model makes sense only if there are many more

controls than cases. Univariate random labeling is

closely related to bivariate random labeling (see below)

and has been applied to investigate competitive thinning

(Kenkel 1988, Moeur 1993, Batista and Maguire 1998)

under the null hypothesis that the survivors are no

different from a random draw of the initial cohort.

Poisson cluster process

The Poisson cluster process explicitly incorporates a

clustering mechanism. Parent events form a CSR process

and each parent produces a random number of offspring

according to a probability distribution f( ). Offspring are

spatially distributed around their parent according to

some bivariate probability density g( ). The final pattern

consists of the offspring only. To avoid edge effects, the

parents must be simulated over a region larger than the

study region but the offspring falling outside the study

region are lost (Bailey and Gatrell 1995). If the number

of offspring follows a Poisson distribution and the

location of the offspring, relative to the parent indivi-

dual, have a bivariate, Gaussian distribution, the off-

spring follow a Neyman-Scott process (Diggle 1983,

Cressie 1991, Batista and Maguire 1998, Dixon 2002).

The K-function and the pair-correlation function for the

Neyman-Scott process are given by:

K(r;s; r)�pr2�
1 � exp(�r2=4s2)

r

g(r;s; r)�1�
exp(�r2=4s2)

4ps2r
(17)

where r is the intensity of the parent process, and s2 the

variance of the Gaussian distribution. Because s is the

standard deviation of the distance between each off-

spring and its parents, the cluster size yields �/2s.

For scales r below the cluster size (i.e. rB/2s) the K-

function can be approximated by K(r)�/r2p�/r2/(4rs2)

(Diggle 1983), and the L-function is approximated

by

L(r;s; r):r

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

1

4prs2

s
�1

�
(18)

Because the parameters r and s are unknown, they must

be fit by comparing the empirical K̂(r) with the

theoretical K-functions (Diggle 1983, Batista and Ma-

guire 1998, Dixon 2002). Rough initial estimates for r
and s can be obtained by using two properties of the L-

function: the maximal value of L̂(r)occurs for a value of r

slightly above the cluster size 2s, and the L-function

increases almost linearly for rB/2s with slope given in

Eq. 18.

Hard-core process

A hard-core process is the simplest extension of CSR to

describe small-scale regularity. Dixon (2002) reviews

analytical formulas of the K-function under different

hard-core processes. For numerical simulation of a hard-

core process, CSR is ‘‘thinned’’ by deletion of all pairs of

points a distance less than d apart. A ‘‘soft-core’’ variant

of this inhibition process distributes provisional points

due to CSR and retains a point that is closer than

distance d from an already accepted point with a

probability that varies within distance d (B/d) between

1 at d�/d and 0 at d�/0. A typical biological situation

for application of a hard-core process is a hypothesized
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negative effect of competition that may work only up to

a certain distance d. A hard-core process is also

appropriate if spatially extended objects, such as non-

overlapping plants of finite size, are analyzed. In this

case, the usual point-approximation will introduce a bias

because the plants are constrained by their diameters to

be at least a certain distance apart. As a consequence,

the point approximation will indicate e.g. regularity but

this appearance of regularity may conceal significant

small-scale aggregation (Simberloff 1979, Prentice and

Werger 1985).

Null models for bivariate point pattern

Interpreting a bivariate K-function or O-ring statistic

can be confusing because it differs from the univariate

case. In the univariate case, visualization of the pattern

can provide an intuitive idea of the first and second-

order properties of a pattern. However, in the bivariate

case we analyze the spatial relation between two spatial

patterns at different spatial scales where each pattern

individually can have a complicated spatial structure.

Confusion may also arise because there is not one simple

and intuitive null model such as CSR, and because a null

model based on CSR (i.e. randomization of both

patterns) leads to an inadequate test of the bivariate

pattern.

The relationship between two patterns can be con-

trasted to two conceptually different null models:

independence and random labeling. The null model of

random labeling assumes that both patterns were created

by the same stochastic process, and each of the two

patterns taken separately represents random ‘‘thinning’’

of the joined pattern. In contrast, the null model of

independence assumes that the two patterns were

generated by two independent processes (e.g. one process

generated the locations of shrubs, and the other process

generated the locations of grass tufts). Departure

from independence indicates that the two processes

display attraction or repulsion, regardless of the uni-

variate pattern of either group by itself. The dis-

tinction between independence and random labelling

requires some care and consideration (Dixon 2002).

When there is no relationship between two processes,

the two approaches lead to different expected values of

K12(r) and O12(r), and to different procedures for

generating null models. Failure to distinguish be-

tween random labelling and independence may lead to

the analysis of data by methods which are largely

irrelevant to the problem at hand (Diggle 1983). Ran-

dom labelling and independence are equivalent only if all

the component processes are homogeneous Poisson

processes.

Independence

Testing for independence is more difficult than testing

for CSR in the univariate case because inferences are

conditional on the second-order structure of each

pattern (Dixon 2002). This is because the theoretical

values of K12(r) and O12(r) do not depend on CSR of the

component patterns and therefore no assumption can

be made about models for either of the component

patterns. Thus, the null model of CSR is not appropriate

to test for independence; the separate second-order

structures of the patterns need to be preserved in their

observed form in any simulation of the null model, but

one has to break the dependence between the two

patterns. One way of achieving this is by simulations

that involve random shifts of the whole of one compo-

nent pattern relative to the other. In practice, a

rectangular study region is treated as a torus where the

upper and lower edges are connected and the right and

left edges are connected.

Random labeling

In the case of random labelling we ask not about the

interaction between two processes, but about the process

that assigns labels to points, conditioning the observed

locations of the points of the joined pattern. Therefore,

the null model of random labelling requires no assump-

tions about the specific form of the two underlying

component processes. Because both component patterns

taken separately represent ‘‘random thinning’’ of the

joined pattern a numerical implementation of random

labelling involves repeated simulations using the fixed

n1�/n2 locations of pattern 1 and 2, respectively, but

randomly assigning ‘‘case’’ labels to n1 of these locations

(Bailey and Gatrell 1995). From their definition, K-

functions (and g-functions) are invariant under random

thinning and therefore we would expect K12(r)�/

K21(r)�/K11(r)�/K22(r). This suggests that a useful

way of investigating departures from random labelling

is to assess the significance of differences amongst

estimates of these functions (Bailey and Gatrell 1995).

Each pairwise difference evaluates different biological

effects. The difference K̂11(r)�K̂12(r) for example eval-

uates whether points of type 1 tend to be surrounded by

other points of type 1, while K̂11(r)�K̂22(r) evaluates

whether one pattern is more (or less) clustered than the

other (Dixon 2002).

Typical biological situations for the application

of bivariate, random labelling are cases where an

underlying pattern is imposed on both patterns, i.e.

a heterogeneous environment. Random labelling has

not been applied much in ecological applications

(but see Dixon 2002), but it is frequently used in

the epidemiological context to account for the

natural variation in the background population
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(i.e. ‘‘population at risk’’, Bailey and Gatrell

1995).

Space-time clustering

Except for random thinning, all null models discussed so

far are concerned with the properties of point patterns

without explicit reference to time. However, we might be

interested in how spatial patterns change over time �/

that is, whether events cluster in space over time. For

example, in plant ecology the locations of plants in a

study region might be re-sampled with a certain time lag

e.g. for determining mortality and recruitment rates or

for studying successional patterns. In order to assess the

spatio-temporal relationships among plants, one can

regard the vegetation maps at different times as being

different patterns and analyze these spatio-temporal

patterns using the bivariate K-function or O-ring

statistic. Space-time clustering has been investigated

e.g. by Wiegand et al. (1998) in an analysis of a model

that simulated vegetation dynamics of colonizer and

successor species in a South African shrubland. Patterns

of space-time clustering are of particular interest in

this system where cyclic succession produced strong

time lags in the establishment of successor species

dependent upon the earlier establishment by colonizer

species. Especially in an epidemiological context, spatial

data on e.g. occurrence of a disease might not stem

from snap-shots of the disease at different times,

but occurrence might be continuously mapped with

a time label attached. In this case, one can define

the ‘space-time’ K-function K(r, t) analogously to Eq.

1. If the processes operating in time and space

are independent, K(r, t) should be the product of

separate space and time K-functions (Bailey and Gatrell

1995).

Antecedent conditions

In some cases antecedent conditions may influence the

choice of an appropriate null model. For example, in

space-time clustering we need to keep the locations of

the earlier pattern fixed, and randomize only the

later pattern following an appropriate null model.

Similarly, for investigating the relationship between

adult trees (pattern 1) and seedlings (pattern 2) an

appropriate null model to test for repulsion or attraction

would be to randomize the locations of the seedlings

(because they could potentially be found at the entire

study region) and to keep the locations of the trees fixed.

Randomizing the locations of the trees would be

inappropriate because they did not change their position

during the development of the seedlings. Moreover,

possible repulsion or attraction between seedlings and

trees might be obscured by randomizing the locations of

the trees.

Examples

Virtual aggregation and bias in the univariate L-

function

If a pattern is not homogeneous, the null model of CSR

is not suitable for exploration of second-order charac-

teristics. This is because large-scale, first-order effects

introduce a systematic bias in the univariate K-function,

not only at larger scales, but also at smaller scales. In this

case, an observed departure from CSR could well be due

to first order effects rather than to second order effects

(Bailey and Gatrell 1995). This can be understood

intuitively, when imagining a point pattern that com-

prises a single internally homogeneous cluster in the

center of the study region (Fig. 3A). In this case the local

density of points in the cluster will be higher than the

overall density of points in the entire study region. As a

consequence, there are always more points in the closer

neighborhood of other points than expected under

homogeneity, and the K-function will indicate aggrega-

tion at smaller scales even if the pattern is random inside

the cluster. We call this phenomenon ‘‘virtual aggrega-

tion.’’

To demonstrate this intuitive idea mathematically, we

imagine a univariate point pattern with overall intensity

l that forms an internally random cluster covering the

proportion c of the study region. There are no points

outside the cluster. Because sub-regions of the cluster

satisfy CSR, the probability O(r) of finding a point at the

closer neighborhood r of other points will be approxi-

mately constant, i.e. O(r)�/gl with g�/1/c. To obtain

the corresponding K-function we integrate Eq. 4 using

g(r)�/O(r)/l�/g (Eq. 3) and obtain K(r)�/pgr2, which

yields:

L(r)�r(
ffiffiffi
g
p

�1) (19)

Thus, under virtual aggregation we observe an L-

function that increases at smaller scales linearly, and

the extent of virtual aggregation, given through the slopeffiffiffi
g
p

�1; is inversely related to the fraction c of the study

region covered by the cluster. Note that for smaller scales

(i.e. scales r below the cluster size) the functional form of

L(r) under virtual aggregation is the same as under a

Neyman-Scott process (Eq. 18 and 19). This is not

surprising because virtual aggregation is caused by

clustering. The difference is that the cluster size under

virtual aggregation is defined to be large, while the

Neyman-Scott process can be applied for any cluster

size.

The L-function can increase under virtual aggregation

only over a limited range of scales; it will start to drop if

a notable proportion of circles overlap the part of the

study region outside the cluster. Finally, the L-function

will approach zero for very large scales r because then all
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points will be located within each circle, i.e. K(r)�/pr2,

and L(r)�/0.

If the pattern shows virtual aggregation but addition-

ally true second-order effects (i.e. a non constant pair-

correlation function g(r) at scales rB/r1, and g(r)�/g for

r�/r1), integration of Eq. 4 yields

K(r)�g
r1

0

2pr’g(r’)dr’�g
r

r1

2pr’gdr?

�K(r1)�pgr2
1 �pgr2 (20)

and the L-function becomes:

L(r)��r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K(r1)

p
�gr2

1 �gr2

s
(21)

which collapses back to Eq. 19 if there are no second-

order effects (i.e. K(r1)�/pgr1
2). Note that Eq. 21

approximates the impact of virtual aggregation only

for a limited range of scales r, and for large scales the

assumption g(r)�/g does not hold because in this case

the circles will overlap the gap. Figure 4 shows how

second-order effects at small scales (i.e. a given K(r1)"/

pr1
2, Eq. 21) impact the L-function at higher scales.

Weak virtual aggregation increases the local density

O(r) at smaller scales r only slightly and it should

therefore not seriously affect the outcome of second-

order analysis. However, the problem is that the Monte

Carlo test for Ripley’s K will indicate highly significant

aggregation because the K-function is a cumulative

measure where aggregation at smaller scales influences

the estimate at larger scales (Eq. 21). The Monte Carlo

Fig. 3. Univariate analysis of a point pattern, and comparison between Ripley’s L-function and the O-ring statistic. (A) map
showing the rectangular study region and the point pattern. The study region was divided into a grid of 198�/191 cells, and the
pattern comprises n�/287 points. The overall intensity l of the pattern in the rectangular study region is l�/0.0076. (B) the O-ring
statistic (solid circles), giving the local neighborhood density of the pattern at scale r and confidence envelopes (open circles).
Confidence envelopes are the highest and lowest O(r) of 99 randomizations of the pattern over the study region. The solid line gives
the intensity l of the pattern in the rectangular study region. The bold line is the average of the O-ring function for scales r�/7�/30.
The ring width was one cell unit. (C) Ripley’s L-function with confidence envelopes (open circles) constructed in the same way as in
(B). The bold line is the approximation Eq. 21 of the L-function for g�/1.34 at scales r�/7�/30.

Fig. 4. The memory in the accumulative Ripley’s L-function. (A) No virtual aggregation (i.e. g�/1 in Eq. 21), but true second-order
effects up to scale r1, and no second-order effects for scales r�/r1. The different curves show Eq. 21 for initial values L(r1)�/�/4,
�/3,�/2,�/1, 0, 1, 2, 3, and 4. The bold line gives the L-function without second-order effects (i.e. K(r)�/pr2). (B) Virtual aggregation
(g�/1.2 in Eq. 21), true second-order effects up to scale r1, and no second-order effects for scales r�/r1. The bold line gives the L-
function without second-order effects (i.e. K(r1)�/pgr1

2). Initial values of L(r1) same as in (A).
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test for the non-accumulative O-ring statistic, however,

will indicate the expected weak aggregation. Our first

example (Fig. 3) illustrates this point. The analysis using

the O-ring statistics reveals a non-random pattern at

scales r�/1�/6 due to second-order effects, and virtual

aggregation at smaller scales r�/7�/30 with an approxi-

mately constant local neighborhood density O(r)�/gl�/

0.0103 (bold line in Fig. 3B) well above the overall

intensity l�/0.0076 of points in the entire study region

(dashed line in Fig. 3B). As expected, the Monte-Carlo

test shows only weak evidence for aggregation. However,

Ripley’s L indicates strong aggregation at scales r�/7�/

30 with an increasing L-function (Fig. 3C). This result

shows that a frequent (implicit) assumption of second-

order analysis (univariate Ripley’s K will reveal under

large-scale heterogeneity the true second-order proper-

ties at small scales) is wrong. As we have shown,

undetected virtual aggregation leads to an erroneous

interpretation of the univariate L-function at smaller

scales.

Delineating homogeneous sub-regions

Evidently, the pattern shown in Fig. 3A contains gaps at

the edges of the rectangular study region that cause

virtual aggregation (Fig. 3B). Now we apply the method

for detecting gaps to this pattern. Because our method

involves estimation of an empirical frequency distribu-

tion P̂k that gives the number of points in overlapping

moving windows, we need to account for the non-

independence of the sample. We achieve this by means

of a two-step procedure. In a first step we select a large

moving window to detect and remove all cells which are

clearly gaps, and in a second step we delineate the gaps

more closely by selecting a small moving window and by

repeating the analysis with the small moving window for

the remaining area only.

In the first step we select a large moving window (R�/

50, one fourth of the width of the study region) to

capture large-scale variation in the intensity l(x, y), and

to remove cells which are clearly gaps we select addi-

tionally a small value p0�/0.01.

Figure 5D shows the empirical frequency distribution

P̂k for moving windows with R�/50 and the correspond-

ing theoretical Poisson distribution. Figure 5D indicates

that there are many cells that have in their 50-cell

neighborhood less points as expected under CSR, and

Eq. 14 yields kmin�/41. We remove 5253 cells (:/14% of

the rectangular area) corresponding to moving windows

containing less than kmin�/41 points (dark gray area in

Fig. 5A), and 6 isolated points. The overall density in the

new (irregularly shaped) study region is l1�/(287�/6)/

(198�/191�/5253)�/0.0086. In the second step we

delineate the gaps more closely using the minimal size

Wmin of a moving window that can discriminate a gap

from a empty plot possible under CSR (Eq. 16). For a

small p0�/0.0025 and l�/0.0086 we obtain Wmin�/694

cells which corresponds to a radius Rmin�/15. Figure 5E

shows the resulting empirical frequency distribution P̂k

for moving windows with R�/15. Visual inspection of

Fig. 5E suggests removing cells whose moving window

contains none or one point. Those are 4368 cells (light

gray area in Fig. 5A) and 4 isolated points. Figure 5F

shows the empirical and frequency distribution P̂k for

the remaining points in the new study region that now

approximates the theoretical frequency distribution

reasonably well. The overall density in new study region

is l2�/(287�/10)/(198�/191�/9621)�/0.0098, and in

total we remove 25.4% of the initial rectangular study

region (thus, c�/0.746).

To test the approximation of the O-ring statistics

(O(r)�/gl) and the L-function (Eq. 21) under virtual

aggregation we compare the predicted and the observed

L and O-functions. Our prediction under virtual aggre-

gation is O(r)�/gl�/0.0102 (g�/1/c�/1.34, l�/0.0076).

The mean value of Ô(r); taken for scales r�/7�/30, yields

0.0103 which is in excellent accordance with our predic-

tion (Fig. 3B). The predicted L-function Eq. 21 under

virtual aggregation and second-order effects (L̂(r�7)�/

1.58) is in good accordance with the observed L̂ (Fig.

3C), however, at scales r�/15 the observed L̂ is lower

than the predicted. Clearly, this is because for larger

scales a notable proportion of the circles used for

calculation of the K-function overlap the gap, and

consequently L̂(r) drops.

After detecting gaps we repeated the second-order

analyses, but performed the analyses only in the homo-

geneous sub-region (Fig. 5A), thus excluding the gaps

and the 10 isolated points. Figure 5B shows that the first-

order effects had a relatively weak impact on the shape

of the O-ring function (Fig. 3B, 5B). The only important

differences are that the weak aggregation at scales r�/6

disappeared and that aggregation at r�/5, 6 became

weak or non-significant. In contrast, removal of first-

order effects had a marked impact on the shape of L̂(r)
and on the confidence envelopes (Fig. 3C, 5C). The

analysis performed in the initial rectangular study region

indicated strong aggregation for r�/5 (Fig. 3C) while the

analysis in the homogeneous sub-region shows that the

pattern is random at scales r�/5. The results of both

second-order statistics are now in accordance, except for

the clear differences caused by the cumulatively property

of Ripley’s L at scales r�/2, and 4.

The pattern in Fig. 3A constitutes a large patch with

no points in the edges of the rectangular study region.

Now we study the effect of the opposite pattern, a

random distribution of points within a rectangular study

region, but with a large gap in the middle (Fig. 6A). We

created this pattern by distributing points at random

over a 101�/101 cell grid and then removing all points

inside a circle with radius 25 cells in the center of the
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square study region (Fig. 6A). At smaller scales (i.e. rB/

18) only few rings around the points of the pattern

overlap the gap (those in the immediate neighborhood of

the gap), thus producing virtual aggregation with an

above-mean density of points inside these rings (hori-

zontal line in Fig. 6B). However, as r increases, more and

more rings overlap the gap, causing the decline in Ô(r)
(Fig. 6B). Therefore, for scales r�/18 we observe the

opposite phenomenon to virtual aggregation, ‘‘virtual

repulsion’’ with below-mean density of points inside the

rings. From Eq. 19 it follows that the L-function will first

increase due to virtual aggregation, and then drop

because of virtual repulsion. This prediction is con-

firmed by the L-function analysis shown in Fig. 6C.

Virtual aggregation produces only marginal significant

departures from CSR when tested with the O-ring

statistic (Fig. 6B), however, the test with Ripley’s K

indicates marginal aggregation for scales r�/1, but

clearly significant aggregation for scales 8�/24 (Fig. 6C).

Next we applied our algorithm to delineate the gap.

Application of the same method as described above

resulted in moving windows with radius R�/25, and

R�/9 in the first, and the second step, respectively, and

visual inspection of Fig. 6G suggests removing cells with

empty moving windows. Fig. 6H shows that the empiri-

cal and expected frequency distribution P̂k for the new

study regions are in good accordance. The overall

density in the initial rectangular study region is l2�/

195/(101�/101)�/0.019. The overall density in new

study region is l2�/(195�/1)/(101�/101�/1800)�/

0.0231, and in total we removed 18% of the initial

rectangular study region (i.e. c�/0.82). Our prediction

under virtual aggregation is O(r)�/g l�/0.0232 (g�/1/

c�/1.21, l�/0.019) in the O-ring statistic, and a linear

Fig. 5. Delineating the homogeneous sub-region of the study region. (A) Map showing the point pattern and the regions of the
study region that were removed during the two-step procedure. Dark grey: cells removed in first step of algorithm to detect gaps
(R�/50, p0�/0.01, kmin�/41), light gray: cells removed in second step (R�/15, kmin�/2), white: homogeneous study region. White
dots are isolated points that are removed. (B) The O-ring statistic (solid circles) with confidence envelopes (open circles). Confidence
envelopes are the highest and lowest O11(r) of 99 randomizations of the remaining 277 points of the pattern over the sub-region
where the pattern is homogeneous (white region in Fig. 5A). The solid horizontal gives the mean intensity of the pattern. The ring
width was one cell. (C) Ripley’s L-function with confidence envelopes (open circles) constructed in the same way as in B. (D)
Observed number of points within circular moving windows of radius R�/50 (solid circles) taken from the initial rectangular study
region, and the expected number under overall homogeneity (solid line). The vertical line indicates kmin�/41. (E) Observed number
of points within moving windows of radius R�/15 (solid circles) after removing the first gaps (i.e. taken from the white and light-
grey region in Fig. 5A), and the expected number under homogeneity (open circles). (F) Same as E, but after excluding all gaps (i.e.
taken only for the white area in Fig. 5A).
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increase of the L-function with slope (
ffiffiffi
g
p

�1)�/0.11.

The mean value of the estimated Ô(r) (Fig. 6B), taken for

scales r�/1�/18, yields 0.023, and linear regression of

L̂(r); taken for scales r�/1�/19 (Fig. 6C), yields a slope of

0.097. Both values are in excellent accordance with our

prediction.

Repeating the second-order analyses in the homoge-

neous sub-region (Fig. 6A) finally confirmed the known

randomness of the pattern and the linear increase of the

L-function at smaller scales and the linear decrease at

larger scales caused by the gap disappears (Fig. 6D, E).

Also, the observed and the expected frequency distribu-

tion of points in circles of radius R�/10 (Fig. 6H) were

in accordance. Note that our two examples are extreme

cases for illustrative purpose and that in cases where a

pattern contains several gaps of different sizes the first-

order effects of virtual aggregation or repulsion may be

obscured because their scales overlap. For analysis of

point patterns that show more complicated first-order

heterogeneity, we exemplify the use of null models based

Fig. 6. Analysis of a random pattern with a gap in the center. (A) The pattern was created by randomly distributing 195 points over
a 101�/101 cell study region, but preventing them to penetrate a circular area in the center (solid circle). Dark grey region: cells
removed in the first step of the algorithm for detecting gaps (R�/25, p0�/0.01, kmin�/23), light gray: cells removed in the second
step (R�/9, kmin�/1), white: irregularly shaped, but internally homogeneous study region. (B) The O-ring statistic for the pattern
(solid circles) with confidence envelopes (open circles) using the highest and lowest O(r) from 99 replicates of a null model where the
points of the pattern were randomly distributed over the entire rectangular study region. The horizontal line shows the mean density
l�/0.0191 of the pattern the original rectangular study region and the bold line indicate virtual aggregation with above-mean
density. The ring width was one unit. (C) Ripley’s L-function for the pattern (solid circles) with confidence envelopes (open circles)
constructed in the same way as in (B). The bold line indicates virtual aggregation with a linearly increasing segment of the L-
function. (D) The O-ring statistic (solid circles) with confidence envelopes (open circles) calculated for the irregularly shaped study
region (white area in A) and a CSR null model. The solid line gives the mean density l�/0.0236 of the pattern in the irregularly
shaped study region. (E) Ripley’s L-function of the pattern (solid circles) with confidence envelopes (open circles) constructed in the
same way as in (D). (F) Observed number of points within moving windows of radius R�/25 (solid circles) taken from the initial
rectangular study region, and the expected number under overall homogeneity (solid line). (G) Observed number of points within
moving windows of radius R�/9 (solid circles) after removing the first gaps (i.e. taken from the white and light-grey region in A),
and the expected number under homogeneity (open circles). (H) Same as (E), but after excluding all gaps (i.e., taken only for the
white area in A).
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on heterogeneous Poison processes as tool for analyzing

second-order effects despite of the presence of first order

heterogeneity.

Null models accounting for full first-order

heterogeneity

In this section we illustrate the numerical imple-

mentation of the heterogeneous Poisson null model

for the two patterns shown in Fig. 3A and 6A. First

we calculated the approximate first-order intensity

l̂(x; y) of the patterns shown in Fig. 3A (Fig. 7A) and

6A (Fig. 7B) using Eq. 15 and moving windows of R�/

15 and R�/10 cells, respectively. We randomized the

points of the patterns in accordance with l̂(x; y):
Note that the shape of Ô(r) and L̂(r) does not change

under this null model compared to CSR (Fig. 3B,

7D, Fig. 3C, 7C, Fig. 6B, 7F, and Fig. 6C, 7E). How-

ever the confidence envelopes are different because

the points of the patterns are randomized in accordance

with different null models, and the confidence en-

velopes for Ripley’s L are not symmetric to L�/ 0

(Fig. 7C, E) since the underlying null model differs

from CSR.

The results of the second order statistics are in

accordance with results from the previous section where

we removed the gaps and analyzed the second-order

properties of the patterns only within the homogeneous

sub-region. For the pattern shown in Fig. 3A Ripley’s L-

function indicates regularity at scales r�/1�/3, and

random distribution at scales r�/3 (Fig. 5C, 7C). The

O-ring statistic indicates regularity at scales r�/1�/2, a

significant aggregation peak at scale r�/4 and random

distribution at all other scales (Fig. 5B, 7D). For the

random pattern with a gap in the center (Fig. 6A) both,

the L- and the O-function, reveal the known randomness

of the pattern (Fig. 7E, F).

Fig. 7. Second-order statistics and null models based on a heterogeneous Poisson process using the moving window estimate Eq. 15
for approximation of the heterogeneous first-order intensity. (A) Approximation of the first order intensity for the pattern shown in
Fig. 3A with a circular moving window of R�/15 units. Light gray indicates zero density, and increasing shading indicates
increasing density. (B) Approximation of the first order intensity for the pattern shown in Fig. 6A with a circular moving window of
R�/10 units. (C) Ripley’s L-function for the pattern Fig. 3A (solid circles) with confidence envelopes (open circles) using the highest
and lowest O(r) from 99 replicates of a null model where the points of the pattern were randomized in accordance to the first-order
density shown in (A). (D) O-ring statistic for the pattern Fig. 3A with confidence envelopes constructed in the same way as in (C).
The ring width was one unit. (E) Ripley’s L-function for the pattern Fig. 6A constructed in the same way as in (C). (F) O-ring
statistic for the pattern Fig. 6A constructed in the same way as in (E).
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Discussion

In this article, we reviewed current methods in point

pattern analysis based on second-order statistics. Over

the past 20 years, many useful approaches and methods

of analysis utilizing second-order statistics have been

explored by statisticians interested in spatial point

processes, and point pattern analysis based on Ripley’s

K has been increasingly used in ecology. However, the

full range of methods that is available has not been

adopted widely by ecologists, and important problems

and pitfalls in their application have not been fully

recognized. This might be largely due to the added

complexity that is required for implementation of non-

standard methods, and due to a lack of appropriate

software for their application. Critical issues in point

pattern analysis are (1) use of an appropriate method of

edge correction, (2) use of specific methods to account

for heterogeneity if the pattern is univariate, and (3)

selection of an appropriate null model that is used in

assessing the observed data, especially for bivariate

patterns.

To make methods of second-order statistics more

accessible to ecologists we reviewed (1) analytical and

numerical methods for implementation of two comple-

mentary second order statistics, Ripleys’s K-function

and the O-ring statistic, (2) methods for edge correction,

(3) a variety of specific null models for univariate and

bivariate patterns, and (4) methods to account for

heterogeneity in univariate patterns. Additionally we

provide our own software that was implemented follow-

ing the numerical approach described in the methods

section. This software enables ecologists to use most of

the standard and non-standard methods reviewed here.

The O-ring statistic

We advocate the use of the O-ring statistic or that of the

closely related pair-correlation function, which were

both proposed two decades ago by Galiano (1982),

and Ripley (1981), respectively, but almost forgotten in

later years. We find it quite curious that Ripley’s K,

which is only one of two potential options of second-

order statistics, is widely used while the other option, the

pair-correlation function, has rarely been used. One

explanation would be that the pair-correlation function

g(r) is conceptually too close to spatial correlograms and

variograms (Upton and Fingleton 1985). Another ex-

planation is that pair-correlation function has been

neglected because it is deterministically related to

Ripley’s K (Eq. 4): lg(r) is based on the frequency

distribution of distances r between all pairs of points

while lK(r) is based on the corresponding accumulated

frequency distribution.

The scientific question at hand may require the use of

the accumulative statistic or the use of the non-accumu-

lative statistic. For example, if the negative effect of

competition is hypothesized to work only up to a certain

distance, an accumulative statistics may be appropriate.

On the other hand, if we ask for ‘‘critical scales’’ in

patterns which may e.g. be related to biological processes

such as competition, facilitation or seed dispersal we

may wish to use a non-cumulative second-order statistic

where the result at smaller scales does not bias the result

at higher scales. For example, the pattern analyzed in

Fig.3Fig. 5 is the spatial distribution of Syagrus yatay

palm trees in the National Park El Palmar in the

Argentinean province of Entre Rı́os (588 17? Long. W;

318 50? Lat. S), a temperate savanna ecosystem (W.

Batista and M Lunazzi, unpubl.). The species S. yatay

reproduces exclusively by sexually produced seeds, which

are then dispersed by gravity or animals. The analysis

with the O-function, which measures local neighborhood

density at different spatial scales, revealed two critical

scales: scales r�/1 m with significantly less neighboring

trees than expected by a random distribution, and r�/4

m with a significantly greater density of trees than

expected by a random distribution (Fig. 5B). In contrast,

the cumulative L-function shows significant repulsion at

scales r�/1�/2 m, and no aggregation at scale r�/4 m

(Fig. 5C). Thus, Ripley’s K- or L-function may actually

obscure the existence of critical scales. From the results

(Fig. 5B) we may derive the hypothesis that the observed

pattern is caused by superposition of the processes of

competition and seed dispersal that operate at different

spatial scales. Seed-dispersal by gravity may cause a

distribution of seeds that is inversely related to the

distance from the stem. However, strong competition in

the neighborhood of a tree counteracts and causes

overall repulsion at these scales. Therefore, the critical

scale r�/4 m may arise because competition is relatively

weak for scales r]/4 m but seeds are still aggregated at

this scale.

The O-ring statistic is a probability density function

with the straightforward biological interpretation of a

local neighborhood density, which is more intuitive than

an accumulative measure (Stoyan and Penttinen 2000).

Because it is a scale-dependent density function, the O-

ring statistic is only marginally biased by virtual

aggregation (caused by larger gaps in the study region

that violate the assumption that the pattern is homo-

geneous). As we have shown, virtual aggregation can be

a considerable problem in univariate analysis using

Ripley’s K. Violation of homogeneity, however, can be

detected by visualizing the O-ring statistic. Thus, using

the O-ring statistic as complement to Ripley’s K may be

especially useful in situations where possible violation of

homogeneity is not obvious from visual inspection of the

pattern.

The number of points of a pattern may constrain the

use of the O-ring statistic. Because the accumulative

Ripley’s K uses all pairs of points that are less than
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distance r apart, and the O-ring statistic only all pairs of

points a distance r apart, the sample size for calculation

of the K-function is considerably larger than that for

calculation of the O-ring statistic. The use of too narrow

rings or analysis of patterns with very few points will

produce jagged plots of the O-ring statistic that make

them difficult to interpret. This is less an issue for the

accumulative K-function.

The grid approximation

The common analytical approach following Eq. 5 uses

all pairs of points to derive an estimator for the K and

the O-function, and edge correction is based on geo-

metric formulas that sometimes requires quite complex

algorithms and can be computationally intensive. Using

an underlying grid simplifies the implementation of

second-order statistics considerably. However, one may

argue that a grid will reduce the accuracy of K̂(r) and

Ô(r) at small scales r because all information below the

grain of the grid (the cell size) will be lost. This is true

since introducing a grid is equivalent to the introduction

of small measurement errors (sensu Freeman and Ford

2002). However, all point measurements are subject to

measurement error (Freeman and Ford 2002) and if the

grid exactly accommodates the measurement error,

accuracy is not lost. If the number of points of the

pattern is large or if the density of points is low, selection

of a small grid size will make the analysis slow and one

may wish to select a larger grid size to increase

computational speed. Freeman and Ford (2002) investi-

gated in detail which magnitude of measurement errors

affects the accuracy of Ripley’s L-function, and their

results can be used to assess a possible loss of accuracy

due to a larger grid size. Addition of measurement error

reduced the amplitude of L̂(r) and caused the corre-

sponding maximum value of L̂(r) to move to larger

distances. This effect was strongest when the scale of

errors approached the scale of the underlying pattern.

Because of this, inhibition is more sensitive than

clustering, and small clusters are more sensitive than

large clusters (Freeman and Ford 2002).

Recommendations

We now synthesize our review into a number of

recommendations. Note that point-pattern analysis is a

descriptive analysis. Even if a particular null model

describes your pattern well, it is not appropriate to

conclude that the mechanism behind the null model is

the mechanism responsible for your pattern. Other

mechanisms may lead to exactly the same pattern.

However, point-pattern analysis helps to characterize

your pattern and to put forward hypotheses on the

underlying mechanisms that should be tested in subse-

quent steps in the field. Therefore, we propose an

exploratory step-by-step protocol for second-order ana-

lysis. Because there are fundamental differences between

univariate and bivariate analysis, we will treat them

separately.

Univariate second-order analysis

1) Visualize the pattern, define a preliminary study

region and plot L̂(r) and Ô(r):
2) If the size of your biological objects cannot be

neglected (i.e. they are large and do not overlap)

you might combine a hard-core null model with the

null models suggested in the next steps. In this case

Ô(r) will be very low for scales up to the size of the

objects.

3) If there is no indication for strong aggregation

(clearly visible clusters in the pattern or a Ô(r)
typical for virtual aggregation) use CSR as the null

model for detecting aggregation or inhibition.

Virtual aggregation (large scale clustering) is in-

dicated by a constant Ô(r) over a range of scales,

and at this range Ô(r) is well above the intensity l
of the pattern (Fig. 3B). Smaller-scale clustering is

indicated by a steep linearly increasing L̂(r) at

smaller scales (Eq. 18). The cluster size is slightly

below the value of r where L̂(r) is maximal.

4) If step (3) indicates virtual aggregation (i.e. large

clusters) exclude the gaps (or use smaller rectan-

gular sub-regions) and apply CSR only in the sub-

region without gaps (or in the smaller plot). Think

about a biological explanation for the heterogeneity

encountered. Perhaps there are obstacles in the

study region, or clear environmental heterogeneity

that prevent points from occurring in the gap.

5) If there is a biological explanation for the hetero-

geneity encountered in step (3) (e.g. clear differ-

ences in soil), you might map the environmental

factor and use this map to obtain an intensity

function of a heterogeneous Poisson process.

Otherwise, you can use the pattern itself to estimate

the non-constant first-order intensity l using the

moving window estimator Eq. 15 for simulation of

a heterogeneous Poisson process null model. Alter-

natively, if there is a surrogate pattern for the

environmental heterogeneity (e.g. the locations of a

different, more common plant species that is

hypothesized to be subject to the same environ-

mental factor), use univariate random labeling as

the null model for testing whether your pattern is

more (or less) clustered than the control.

6) If there is no obvious environmental heterogeneity,

your pattern may be a realization of a cluster

process. Use L̂(r) to obtain rough (initial) estimates

of the parameter r and s of a Neyman-Scott
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process and fit the parameters using the methods

given in Diggle (1983), Batista and Maguire (1998),

and Dixon (2002). Use the estimated parameters r
and s to simulate confidence envelopes for the

Neyman-Scott process null model. Clearly, there

are a number of other point-processes you might fit

to your data. However, because of small number of

points and noisy data, you might not be able to

statistically separate them.

7) If there is small-scale regularity and larger scale

clustering, the expected L-function for the Ney-

man-Scott process needs to consider the small-scale

regularity because the L-function is accumulative

and conserves at larger scales some ‘‘memory’’ on

the small-scale regularity (Fig. 4). This can be done

analogously to Eq. 20. Alternatively, one may use

the pair-correlation function (which has no mem-

ory) to fit the unknown parameters r and s.

Bivariate second-order analysis

The bivariate analysis is more complicated than the

univariate analysis because there are two basic null

models (independence and random labeling) and be-

cause null models from the univariate case can be

combined in several ways to obtain specific bivariate

null models. Therefore, it is especially important to

define the biological question, the hypothesis, and the

biological circumstances carefully to be able to find an

adequate null model.

1) Visualize the patterns and perform univariate

analysis of both patterns. Define the basic null

hypothesis (i.e. independence vs random labeling).

Otherwise, if both patterns were probably created

by the same stochastic process random labeling is

appropriate, whereas independence is appropriate if

the patterns might be created by independent

processes.

2) A common environmental factor affected both

patterns in the same way: In this case, the two

patterns are heterogeneous and are merged in joint

clusters. Under this circumstance, a random label-

ing null model is appropriate. However, there is a

heterogeneous Poisson process null model with the

same effect: keep the locations of pattern 1 fixed

and randomize pattern 2 according to a hetero-

geneous Poisson process. An appropriate intensity

function can be constructed using a moving

window estimate of the joined intensity of pattern

1 and pattern 2, but with a relatively small radius

R.

3) The two patterns were created by different pro-

cesses: In this case, you might use the toroidal shift

null model, i.e. keeping pattern 1 fixed and shifting

the whole of pattern 2 by treating the study region

as a torus. Of course, this works only if you have a

rectangular study region.

4) The two patterns were created by different pro-

cesses related to different heterogeneous environ-

mental factors: The appropriate null model for this

hypothesis is to keep one pattern fixed and preserve

the larger-scale heterogeneity of the other pattern,

i.e. use a heterogeneous Poisson process to simulate

pattern 2, and vice versa. An appropriate intensity

function can be constructed using a moving

window estimate of the intensity of pattern 2. The

radius R of the moving window decides how closely

you mimic the heterogeneity of pattern 2.

5) The two processes were linked: An example for this

possibility is a clustered distribution of seedlings

around adult trees e.g. due to a limited range of

seed dispersal. In this case, the locations of trees

have to be preserved, and the seedlings can be

randomized following a Neyman-Scott process null

model where the parents are given through the

pattern of adult trees. In this case, only one

parameter of the cluster process has to be fit since

the intensity r is given through the density of

pattern 1. Note that a similar effect of clustering of

seedlings around trees may arise if both patterns

are strongly impacted by the same environmental

factor.
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