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LANDSCAPE-LEVEL HABITAT SUITABILITY
MODELS FOR TWELVE WILDLIFE SPECIES
IN SOUTHERN MISSOURI

Michael A. Larson, William D. Dijak, Frank R. Thompson, lll, and Joshua
J. Millspaugh

ABSTRACT.—Geographic information systems (GIS) and abundant landscape-level data, often from
remote sensing sources, provide new opportunities for biologists to model and evaluate wildlife
habitat quality. Models of habitat quality have not been developed for some species, and many
existing models could be improved by incorporating updated knowledge of wildlife—habitat relation-
ships and landscape variables such as the spatial distribution of habitat components. Furthermore,
landscape analyses and wildlife population priorities are common features of land management
decision processes. We developed GIS-based habitat suitability index (HSI) models for 12 terrestrial
vertebrate species that represent a range of potential conservation concerns and have diverse habitat
requirements. We developed the models for a large, mostly forested area in southern Missouri and
similar landscapes. The models are based primarily on tree species, tree age, and ecological land
type—uvariables available in many GIS and vegetation databases. After describing and justifying the
models, we applied them to maps of a study area that contained a wide range of tree ages and forest
patch sizes. We believe application of the habitat models in this landscape demonstrated that they
satisfactorily predict habitat suitability. Readers can download a Windows-based software program
from the Internet (www.ncrs.fs.fed.us/hsi/) to use in implementing the models in other landscapes.

sample of locations within land cover types or
dominant overstory vegetation types. Habitat
quality in an area is typically summarized in
terms of habitat units, which represent the
product of the mean HSI score in each vegeta-
tion type and the area of land in that vegetation
type, summed across the study area.

Quantifying habitat quality is important for
management of wildlife populations and
conservation planning. Habitat suitability index
(HSI) models have been used to evaluate wildlife
habitat and the effects of management activities
and development since the early 1980s (U.S.
Fish and Wildlife Service 1980, 1981). These
models are based on functional relationships
between wildlife and habitat variables. Values of
habitat variables (e.g., herbaceous canopy cover,
tree canopy cover, tree height) are related to
habitat quality on a suitability index (SI) scale
from 0 = “not habitat” to 1 = “habitat of maxi-
mum suitability.” Habitat suitability index
scores, also on a 0-1 scale, are usually calculated
using a mathematical formula representing
hypothesized relationships among the individual
Sls. Wildlife-habitat relationships may be
supported by empirical data, expert opinion, or
both (U.S. Fish and Wildlife Service 1980,
1981). Traditionally, HSI models are applied to a

Now that geographic information system (GIS)
software and high-speed computer hardware are
widely available, their use among biologists is
increasing. In addition to providing a new,
powerful analytical tool, GIS technology allows
land and wildlife managers to utilize novel
sources of land cover, vegetation, and other
habitat data, namely remote imagery from aerial
photographs and satellite sensors and GIS
databases of elevation, surface water, climate
data, and ecological land types. Concurrent with
GIS developments have been advances in our
understanding of wildlife—habitat relationships,
especially at landscape scales.
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Using GIS for HSI-type habitat evaluations has
several advantages over traditional HSI model-
ing. It is easier and faster to apply GIS-based
habitat models to large geographic areas because
time- and labor-intensive collection of field data
is not necessary. Spatial structure and landscape
patterns are often important aspects of habitat
quality (Donovan et al. 1987, Rickers et al.
1995, Robinson et al. 1995) and are much easier
to incorporate in GIS models. Furthermore, GIS-
based habitat models can be used to evaluate
landscapes simulated by spatially explicit forest
landscape models [e.g., LANDIS (He et al. 1996,
1999; Mladenoff and He 1999)], which are
useful for comparing alternative land manage-
ment scenarios over time (e.g., Marzluff et al.
2002, Shifley et al. 2000).

The full use of GIS in habitat modeling, how-
ever, requires the revision of existing HSI models
or the development of new ones. Whereas most
existing HSI models are based on relatively
small-scale habitat variables measured by
biologists in the field, GIS-based HSI models
have the capability to more readily focus on
larger scale habitat variables that can be quanti-
fied without going afield. In addition to substi-
tuting large- for small-scale variables that may
characterize similar habitat attributes (e.g.,
percent forest and spherical densiometer
measurements both quantify canopy cover), new
landscape variables (e.g., patch size and edge
density) may be incorporated into the HSI
model and habitat suitability may be analyzed at
multiple spatial scales.

Our objective was to develop habitat suitability
index models that could be used in a GIS to
evaluate wildlife habitat quality in large (i.e.,
thousands of hectares) forested landscapes. We
developed a series of single-species habitat models
that satisfied three criteria: they represented a
variety of terrestrial vertebrates, were applicable to
landscapes in southern Missouri, and could be
implemented in raster GIS using data available for
large spatial extents. We described the models and
demonstrated their effectiveness by applying them
to landscape maps with diverse patch sizes and tree
ages that were the result of forest management
simulated by LANDIS. Readers can download a
Windows-based software program from the
Internet (www.ncrs.fs.fed.us/hsi/) to modify the
models and apply them in other landscapes.



METHODS

We selected 12 species representing a variety of
terrestrial vertebrates ranging from endangered
species to game species, ranging from mast-
dependent to disturbance-dependent species,
and including three classes of vertebrates (table
1). We developed a GIS-based habitat model for
each species. The models for the two bat species
and salamander, which are dormant during
winter, and the four neotropical migrant
songbirds consider only habitat used during
summer. Therefore, we did not address potential
winter-habitat limitation for these species. The
remaining five species are nonmigratory, and
their models reflect year-round habitat require-
ments.

Habitat models existed for most species we
selected, so we revised those models according
to several needs: to reconcile conflicts among
models if more than one model existed, to revise
or delete variables for which field sampling
would be necessary, to incorporate spatially
explicit variables (i.e., interspersion of life
requisites), to adapt models to our geographic
and ecological context, and to incorporate
advances in our understanding of wildlife—
habitat relationships since the original models
were developed. We developed new models for
the two bat species because no previous models
existed. Model revisions and newly developed
models were based on published empirical data
and expert opinion. These models represent our
synthesis of the best information available, but
potential users should recognize that the models
have not been validated with independent data.
While we encourage model validation efforts,
our assumption is that habitat suitability
models, even if not validated, are a useful
method to synthesize and apply current knowl-
edge of habitat relationships to management or
conservation questions. Furthermore, because
habitat suitability models can be developed from
a broad base of existing knowledge, they may
have more general applicability than statistical
models based on single data sets that are narrow
in scope. Methods that have recently been

reported for setting confidence bounds on
habitat suitability indices (Bender et al. 1996,
Burgman et al. 2001) could potentially be
applied to these models.

Mathematical and logical relationships used to
calculate HSI scores varied depending upon the
number and types of Sl variables included in the
model. We used arithmetic or geometric means
(e, [x +x,+...+ x ]/nand [x, x X, x ... x X ",
respectively) to combine variables representing
life requisites, or tangible resources. We used a
geometric mean when habitat quality was zero if
the value of any single Sl variable was zero,
indicating that habitat characteristics were all
necessary and therefore not substitutable.
Otherwise, we used an arithmetic mean. Some
variables (e.g., edge sensitivity), however, were
used to adjust the value of a life requisite
variable because they did not represent re-
sources themselves. We incorporated such
variables, which typically had two or three
discrete values, using simple multiplication
rather than a mean. Occasionally, life requisites
for a species cannot be expected to occur in a
single site or raster cell (i.e., map pixel). For
example, cover and winter food requisites for
ruffed grouse (see table 1 for scientific names of
modeled species) are satisfied by young and
mature forest, respectively. In such cases, the
HSI score in a cell represented predominantly
one life requisite rather than both because we
used a maximum function to choose between
the contrasting life requisite variables. In such
cases we also included variables to account for
the proximity of the life requisites and the
potential for rare instances when both usually
contrasting requisites were satisfied within a
single cell (see Composition and Interspersion
below). We used a minimum function when we
wanted an HSI score to represent a single
limiting factor (e.g., food or cover for gray
squirrels). Exceptions to these rules were rare,
simplified calculations, and resulted in HSI
scores identical to those based on the methods
described here.



Table 1.—Species selected for habitat modeling in a southern Missouri landscape, their scientific names, the group or management concern
they represent, and the assumed size of their smallest home range in Missouri

Size of Citations for
Group or high quality home range
Species Scientific name management concern home range size
Ovenbird Seiurus aurocapillus Late-successional, area- 0.8 ha Wenny 1989, Porneluzi
sensitive songbird and Faaborg 1999
Prairie warbler Dendroica discolor Early-successional, area- 0.5 ha Nolan et al. 1999
sensitive songbird
Hooded warbler Wilsonia citrina Area-insensitive songbird 0.8 ha Evans Ogden and
Stutchbury 1994,
Norris et al. 2000
Pine warbler Dendroica pinus Pine-dependent songhird 1 ha Haney and Lydic 1999,
Rodewald et al. 1999
Eastern wild turkey Meleagris gallopavo Mast-dependent game bird 102 ha Speake et al. 1975,
silvestris Wigley et al. 1986,
Badyaev et al. 1996
Ruffed grouse Bonasa umbellus Disturbance-dependent 5 ha McDonald et al. 1998,
game bird Fearer 1999
Gray squirrel Sciurus carolinensis Mast-dependent mammal 0.6 ha Flyger 1960, Cordes
and Barkalow 1972,
Schwartz and
Schwartz 1981:149
Black bear Ursus americanus Wide-ranging mammal 20 km?  Clark 1991, van Manen
and Pelton 1997
Bobcat Lynx rufus Wide-ranging, disturbance- 9.8 km? Hamilton 1982, Rucker
dependent mammal et al. 1989
Northern long-eared  Myotis septentrionalis Snag-roosting bat and ~13  km? Foster and Kurta 1999
bat endangered species
Red bat Lasiurus borealis Live-tree roosting bat ~13 km?  Foster and Kurta 1999
Southern redback Plethodon serratus Terrestrial amphibian Unknown

salamander




Geographic Area of Applicability Study Area and Primary

Our models were designed for large landscapes ~ INput Data

(thousands of hectares) in Missouri that contain  After developing each model, we applied it to
mostly central hardwood forests. Users applying  GIS maps of our study area. The study area was
them to other geographic areas or landscapes, a 3,261-ha, nearly 100 percent forested, oak-
especially where the dominant land cover is not  dominated landscape in the Mark Twain

forest, should consider modifying and validating ~ National Forest in southern Missouri (fig. 1). It
the models.
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Figure 1.—Geographic
location of the 3,261-ha
(approximately 5 x 7 km)
study area relative to the state
of Missouri and the mostly
forested Ozark region.
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occurs in a 1.8-million-hectare landscape that
also contains contiguous (92%) hardwood forest
(Porneluzi and Faaborg 1999).

Our models utilize digital, raster-based maps of
ecological land types and the age and species
group of dominant overstory trees, which are
available from a variety of sources such as forest
inventories, interpreted aerial photos, and
classified satellite imagery. For our demonstra-
tion we used output from the 100th year of
simulated forest management on the study area
(see appendix). The simulation resulted in a
landscape with a wide range of tree ages and
patch sizes (table 2, figs. 2 and 3), which is
helpful for evaluation of model performance. We
used a raster resolution of 30 m? (0.09 ha) and
retained that resolution in our HSI models.
Therefore, Sl values were based on attributes of
a single raster cell rather than a forest stand or

animal home range whenever possible. A high
resolution is desired because it results in the loss of
less information about the real landscape than
lower resolutions, and if desired, the data or
associated Sl values can be averaged at a coarser
scale that may better represent how an animal
perceives its environment.

Dominant overstory tree groups were white oak
(Quercus alba, Q. stellata), red oak (Q. rubra, Q.
coccinea, Q. velutina, Q. marilandica), maple (Acer
spp.), and short leaf pine (Pinus echinata). We
assumed that differences in the age and type of
dominant trees and land type classifications (table
3, fig. 2) among pixels adequately represented
variation in understory characteristics that may
affect habitat quality for some species (e.g., sapling
density and shrub cover) (McKenzie et al. 2000).
The only openings in our study area were cells
containing trees <10 years old, indicating a recent

Table 2.—Percentage of area in the southern Missouri study area in categories of tree age and
species group after 100 years of simulated forest management. The sum of reported percentages
may not equal sums in the last column and row due to rounding.

Tree species group

Tree age
(years) Red oak White oak Maple Pine Sum
1- 10 0.5 3.7 0.0 0.3 4.4
11- 20 0.4 3.3 0.0 0.4 4.1
21- 30 0.1 4.1 0.0 0.4 4.5
31- 40 0.1 35 0.0 0.3 3.9
41- 50 0.1 3.8 0.0 0.3 4.1
51- 60 0.1 3.4 0.0 0.2 3.7
61- 70 0.1 4.0 0.0 0.3 4.4
71- 80 0.1 4.8 0.0 0.1 5.0
81- 90 0.3 4.7 0.0 0.1 5.1
91-100 0.3 3.1 0.0 0.3 3.7
101-110 0.0 0.0 0.0 0.0 0.0
111-120 8.4 9.4 0.1 2.0 20.0
121-130 0.0 0.0 0.0 0.0 0.0
131-140 0.0 0.0 0.0 0.0 0.0
141-150 9.7 8.7 15 3.8 23.7
151-160 0.0 0.0 0.0 0.0 0.0
161-170 6.1 5.0 0.7 1.4 13.3
Sum 26.3 61.3 2.3 10.0 100.0
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Figure 2.—GIS coverages of
the southern Missouri study
area (extent = approximately 5
X 7 km; resolution = 0.09 ha)
representing input variables for
the habitat quality models: (a)
age of dominant trees, (b)
species group of dominant
trees, (c) ecological land types,
(d) land type groups, and (e) a
paved road (28.7 ha), private

Land land (9.5 ha) that appeared as
B Foesbeies - Frisaln empty cells, and permanent
[ H o ponds (1.5 ha). See the

appendix for more details.



Figure 3.—Cumulative
distribution of patch sizes by
tree age category in the
southern Missouri study
area. Young = 1-50 years
(distributions for seedling,
sapling, and pole classes
were very similar), mature =
51-100 years, and old
growth = 101+ years. Not
represented are 0.5 percent
of young forest patches (n =
2,163) 10-26 ha in size, 0.6
percent of mature forest
patches (n = 1,296) 10-127
ha in size, and 2 percent of
old-growth forest patches (n
=544) 10-50, 627, and 798
ha in size. Note that the
origin is not 0,0 and the x-
axis is a log, , scale.
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stand-replacing disturbance, and some glades.
The right-of-way of a State highway bisecting
the study area (28.7 ha) and a few small patches
of private land (<2 ha each, 9.5 ha total)
appeared as empty cells (fig. 2). Depending
upon the wildlife species, we also used GIS
coverages for the paved road and permanent
ponds in some habitat quality models (fig. 2).

Examples of GIS Methods and
Common Model Components

Land Type Adjustments

Forest composition and dynamics can vary
considerably by ecological land type (Host et al.
1987, Kupfer and Franklin 2000, Miller 1981).
Land type is also a major factor that determines
other forest characteristics such as density and
composition of herbaceous and woody under-
story vegetation (Hix and Pearcy 1997, Host and

Pregitzer 1992, Shifley and Brookshire 2000).
Much of wildlife habitat in forest ecosystems is
often characterized by successional stage and
variables associated with understory or ground
cover. Therefore, we used the interaction of age of
dominant trees and land type as an Sl variable in
many of our models. Usually, we accomplished this
in one step by specifying Sl values in tables with
tree ages in rows and land type categories in
columns (e.g., table 4). Specification of such SI
values was based on differences among land type
categories in the rate of succession and the density
of vegetation. Occasionally, an SI was dependent
solely on land type, such as in the hooded warbler
model, and the interaction with other variables
occurred in the HSI calculation. We used similar
methods to adjust Sl values for tree species group
(e.g., see the model for ovenbirds, which do not
use areas dominated by conifers).



Table 3.—Relationships among land type categories

Land types Land types Ecological land type?
used in used to predict
our models oak mast production Land form Soil and vegetation
Glade Glade Southwest side slope Glade savanna
Side slope Dolomite/limestone glade
Dry Southwest side slope Southwest side slope Dry chert forest
Flat Ridge Xeric chert forest
Ridge Dry chert forest
Flat Xeric chert forest
Flat Dry chert forest
Limestone Northeast side slope Dry-mesic limestone forest
Side slope Xeric limestone forest
Side slope Dry limestone forest
Mesic Northeast side slope Northeast side slope Dry-mesic chert/sand forest

Upland drainage

Mesic

Upland waterway
Upland waterway
Upland waterway
Low floodplain
Floodplain

High floodplain
Toe slope
Sinkhole
Sinkhole

Gravel wash

Dry bottomland forest
Dry-mesic bottomland forest
Wet-mesic bottomland forest
Calcareous wet forest

Mesic bottomland forest
Mesic forest

Mesic forest

Acid seep forest

@ Based on the classification for the Mark Twain National Forest (Miller 1981).
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Hard Mast Production

Much of the Missouri Ozarks is dominated by
mast-producing hardwoods, especially oaks.
Hard mast provides an important fall and winter
food resource for many wildlife species. Sullivan
(2001) developed a mast production model to
complement other subroutines in LANDIS. The
main input variables were age of dominant trees
and land type, and the main output was an
index of mast production. The model accounted
for varying ratios and densities of red and white
oaks within cells and incorporated spatial and
temporal stochasticity. For the mast-dependent
wildlife species we selected, we used output
from Sullivan’s (2001) model to develop habitat
suitability relationships for mast production. We
used mean mast index values from a single
application of the model in our simulated study
area to determine relative mast production by

tree species group and age of dominant trees on
a cell. Assuming no mast production on cells
dominated by maples or pines, we developed
separate relationships for red and white oaks
only. We rescaled the raw index values to a 0-1
Sl interval so that SI = 1 approximately coin-
cided with the maximum mean production of
mast on most land types for both red and white
oaks (fig. 4). This resulted in SI values greater
than one for 20 percent of tree age x land type x
tree species group combinations. We think this
is appropriate, given that the relationship is
based on mean mast production and that
maximum mast production could be greater
than five times higher (Sullivan 2001). We fit
fourth-order polynomial regression functions
forced through the origin to the rescaled index
values over tree age for each tree species group x
land type combination (table 5, fig. 4). We used

< 1.5 1 Red oak
S
=
> 1.0
z
® 0.5
=
n

0.0
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©
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Figure 4. —Suitability index
values of cells dominated by
red oaks (top) and white oaks
(bottom) for hard mast
production based on an index
developed by Sullivan (2001)
for forests in southern Mis-
souri. Production varies by
land type, and index values >1
are rounded down to 1 in the
HSI models.
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the regression functions in the HSI models and
assigned SI = 0 if the function resulted in values
<0 and SI = 1 if the function resulted in values
>1 (fig. 5). Hard mast production is a variable in
models for wild turkey, ruffed grouse, gray
squirrel, and black bear.

Patch and Distance Algorithms

Many species are sensitive to the size of habitat
patches. In models for prairie warblers and
ruffed grouse, we used a patch-definition
algorithm to aggregate cells containing suitable
habitat as defined earlier in the model by SI
relationships with tree age and land type. A
habitat cell was aggregated into a patch if it was
immediately adjacent to another habitat cell,
either by a shared side (i.e., horizontally or
vertically) or corner (i.e., diagonally). Once
habitat patches were defined, we assigned SI
values based on the size of patches (fig. 6).

We used different algorithms to assign Sl values
based on a cell’s distance from a habitat requisite or
landscape features that individuals avoid. For
example, our two bat species require access to
surface water and black bears avoid paved roads.
The distance algorithm assigned a value to each cell
in the landscape; the value was equal to the
distance between the cell and the nearest cell
representing either water or a road. The Sl value
was based on that distance (fig. 7).

Moving Window Analysis

A vector-based GIS is based on lines and points, so
boundaries between land units are explicit features
of the landscape, and metrics such as distance from
a point to a boundary can be measured easily. One
limitation of vector-based GIS is that landscape
characteristics are considered uniform within
defined polygons. We developed our habitat
models for raster-based GIS, in which landscape

Table 5.—Polynomial regression coefficients for the mast production suitability index. The y-intercept is zero for all

regression equations.

Regression parameter

Oak

group Land type? Tree age (Tree age)? (Tree age)® (Tree age)*

Red Flat -7.2535 x 10°® 7.4473 x 104 -7.6811 x 10°® 2.0813 x 10°®
NE side slope -1.7311 x 102 1.0451 x 10°® -1.0006 x 10° 2.6178 x 108
SW side slope -1.1024 x 10 7.2305 x 10* -7.0058 x 10°® 1.8413 x 10
Limestone -1.4904 x 10 7.2273 x 10* -6.5360 x 10 1.6524 x 10°®
Mesic -1.4810 x 10 6.9970 x 10+ -6.3497 x 10°® 1.6164 x 10
Upland drainage  -7.5360 x 10 4.4903 x 10* -4.2507 x 10°® 1.1012 x 10
Glade -6.9367 x 10 3.0603 x 10+ -2.6928 x 10°® 6.6967 x 10°

White Flat -9.2984 x 10 4.1544 x 104 -1.7617 x 10°® 5.1103 x 10°%°
NE side slope 2.0223 x 10°® -7.0890 x 10° 1.8744 x 10°® -7.2031 x 10°
SW side slope -3.5297 x 108 1.2540 x 10+ 1.5010 x 107 -2.8681 x 10°
Limestone -7.5926 x 10 2.5998 x 10+ -1.1299 x 10°® 6.1906 x 10°%°
Mesic -3.3179 x 10 1.1667 x 10* -3.8002 x 10°® -1.9354 x 10°
Upland drainage  -2.6792 x 103 8.8265 x 10° 1.8711 x 107 -2.4772 x 10°
Glade -4.2093 x 10°® 1.5445 x 10* -6.1443 x 107 1.6130 x 10!

@ Land type categories are described in table 3.
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Figure 6.—Example
application of a patch
definition algorithm. Cells of
varying suitability (top) are
aggregated into habitat
patches (bottom), which
vary in quality based on
size. Extent = approxi-
mately 660 m wide;
resolution = 0.09 ha.
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DISTANCE TO ROAD

Figure 7.—Example applica-
tion of a distance algorithm. A
paved road through the center
of the study area (top) and four
ponds (bottom) affect habitat
suitability based on distance.
Private lands appear as empty
cells.
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characteristics occupy square grid cells. There-
fore, characteristics are uniform only at the
resolution of the raster cells. Another benefit is
that boundaries between groups of cells repre-
senting, for example, forest stands are not fixed.
A main limitation of raster-based GIS is that
boundaries are not explicitly defined, so
measuring distances to them is difficult. We
used moving window analyses to overcome that
limitation.

Edge Sensitivity.—In models for ovenbirds and
prairie warblers, we used moving window
analyses to evaluate habitat quality near edges
between suitable habitat and non-habitat. First,
we identified cells containing habitat as those
containing a nonzero value for =1 Sl relation-
ship; all other cells were defined as non-habitat.
Then, assuming habitat near an edge with non-
habitat was of lower quality than habitat farther
from an edge, we used a moving window
approximately twice as wide as presumed edge
effects to assign an Sl value for edge sensitivity.
The central cell of the window received an SI
value <0.5 for edge sensitivity if the window
contained non-habitat (i.e., the minimum value
in the window was zero). Otherwise, the central
cell of the window received an Sl value of 1.0
for edge sensitivity because habitat edges would
be farther from the central cell than the distance
of presumed edge effects.

After the Sl for edge sensitivity is multiplied by
other Sl values, non-habitat would appear as
non-habitat (even though it was assigned SI = 1
for edge sensitivity), and habitat suitability near
non-habitat edges would be half as high relative
to similar cells farther than the threshold
distance from edges (fig. 8). We also used this
method in models for red bats and northern
long-eared bats, both of which prefer foraging
near edges and forest openings.

Composition and Interspersion.—In models for
hooded warblers, wild turkeys, ruffed grouse,
and black bears, we used moving window
analyses to assign Sl values based on the

composition of habitat requisites. First, we recoded
habitat suitability based on requisites such as
nesting cover, S, and foraging areas, SI,, in the
same GIS map according to the following rules:
code=0 if SI, < 0.5 and SI, < 0.5, code=1 if SI, =
0.5, code=2 if SI, = 0.5, and code=3 if SI, = 0.5
and SI, = 0.5 (fig. 9). If both habitat requisites were
present in ideal proportions in a moving window
the approximate size of a high quality home range,
suitability for composition was greatest (i.e., SI, =
1; fig. 9). The observed proportion of a habitat
requisite was based on the number of cells contain-
ing the corresponding codes:

Proportion =

observed

) (NQ of :ls)+ (\lo. of 33) .
(No of cellsin thewindow)+(No. of 3s)

We used a similar approach to evaluate the proxim-
ity of habitat components in a moving window
analysis for northern long-eared bats. Recoding of
Sls using unique, generic numbers in a single GIS
map was the same, but the new SI was based
simply on the presence of cells of each type within
the window, not on their proportions.

Software Availability

Readers can download a Windows-based software
program from the Internet (www.ncrs.fs.fed.us/hsi/)
to modify the models and apply them in other
landscapes.



"Bl 60’0 = UONN|OSaI BPIM W 069

Ajarewixoidde = juaix3 T = °|S 8sIMIBYI0 {0 = '|S SI MOPUIM B4} Ul anjen wNWIUIW 8y J1 §'0 = °1S ‘MopuIm BuAW 8UJ JO [[39 [B41U89 3y} 104 sisAjeue mopuim Buiaow |[ad
-€ X -€ © U0 paseq IS *(0) yenqey-uou pue (T) 1egey sauysp ‘1S Jeygey-uou yum safips resu Aujigenns Jenqey sxenjeas 0y mopuim Buirow e Buisn sjdwex3—g ainbig

Eeg oy
i

50
gls

woon [N
o
vo

CIS X LIS

——
1B I

mpgeL-uoy)

HIS

17



"BY 600 = UOIIN|OS3I ‘OPIM W ZE'T = JUSIXT MOPUIM 8} W0} Juasqe si apsinbai Jayaia 1oy 1engey Aupenb ybiy i 0 = £1S yenqey Buibeioy Aipenb ybiy surejuod ey 1ayio
a3 pue Janod Bunsau Aujenb b1y sureiuod mopuim Buinow snipes-|[o- e Jo Jey ji T st (°1S) uomsoduwioa uo paseq Anjiqenns (G0 > “IS pue G0 > ISH 0 ‘50 = “ISH 2 'S0

= '|s 11 T) dew §|9 awes ay) ul papodal ale 1S ‘sease Buibelo) pue s 4ano0o BunsaN ‘sansinbal yelgey Jo uonisodwod arenfeas 01 mopuim Buirow e Buisn ajdwex3—'6 ainbi4

€IS ¥ HS peulquwo]

LIS

i
=
1

h

18



MODEL DESCRIPTION AND APPLICATION

Ovenbird

We chose ovenbirds because they are area-
sensitive songbirds that select late-successional
hardwood forests (Crawford et al. 1981, Stauffer
and Best 1980) (table 1). Ovenbirds require a
closed overstory canopy and a relatively open
understory (Neimi and Hanowski 1984) because
they forage and nest on the ground (Van Horn
and Donovan 1994) (table 6). Although their
territories are <3 ha (Porneluzi and Faaborg
1999, Van Horn and Donovan 1994, Wenny
1989), ovenbirds usually do not occur in small
forest patches and can experience reduced
pairing success in forest patches <500 ha in size
(Hayden et al. 1985, Robbins et al. 1989, Van
Horn et al. 1995, Villard et al. 1993). Further-
more, ovenbirds avoid pines (Collins 1983; c.f.,
Penhollow and Stauffer 2000) and the edges of
even large forest tracts (Flaspohler et al. 2001a,
b; Ortega and Capen 1999; c.f., Sabine et al.
1996). A pattern recognition model of ovenbird
habitat in the Mark Twain National Forest
indicated higher probabilities of use in forest
stands associated with oak overstory, greater
basal area (=7.43 m?/ha), intermediate crown
closure (60-70%), and less ground cover
(=10%) (Sweeney and Dijak 1985).

Our ovenbird habitat model contained three
suitability indices. The first Sl related high
habitat quality with trees >50 years old on mesic
sites (Thompson et al. 1992, Yahner 1986)
(table 4, fig. 2). Suitability of forest of a given
age was lower on dry sites because succession to
a relatively closed canopy and open understory
occurs more slowly there (table 4). The second
suitability index addressed ovenbird preference
for broadleaf forest; SI, = 0 if the dominant trees
on the cell were in the pine group, and SI, = 1
otherwise. Therefore, oak-pine stands would
receive intermediate values for SI, and stands
covered predominantly by pines would appear
as unsuitable habitat. The third SI reduced
habitat suitability by half within 30 m of an edge
between mature forest and either permanent or
temporary openings. Negative edge effects on

nesting success may extend further into a forest
(Flaspohler et al. 2001b), but we chose to be
conservative because they have not been well
documented in southern Missouri. We assumed
that habitat patches in our landscape would be
sufficiently large to preclude other spatial effects
that make ovenbirds area-sensitive. We imple-
mented SI, using a moving window analysis. \We
moved a square, 3- x 3-cell (0.81-ha) analysis
window across a GIS layer containing output
from SI,. We assigned a value for SI, to the
central cell of the window. The value was SI, =
0.5 if the value of SI, in any of the cells within
the window was 0 (or “no data” due to presence
of a road). Otherwise, the value of Sl for the
central cell was 1. We moved the window
systematically one cell at a time.

The HSI score for the ovenbird model was the
product of the three suitability indices because
tree species group and edge effects modified the
suitability of appropriate-aged forest (table 6).
These relationships were evident in the HSI map
of the study area. The first suitability index was
the main component of habitat suitability for
ovenbirds, and S, and Sl reduced suitability in
small areas of pines and near openings (fig. 10).

Prairie Warbler

Prairie warbler habitat consists of early-succes-
sional woody vegetation (Nolan et al. 1999). In
our study area this occurred in recently dis-
turbed forest and glades (table 4). Ideally,
patches of suitable habitat are >3.5 ha, but
patches as small as 0.4 ha are used (Nolan
1978:331-337, Robinson and Robinson 1999).
Annand and Thompson (1997) did not detect
prairie warblers in areas subject to single-tree
and group-selection harvests in southeastern
Missouri. Although prairie warbler habitat may
be associated with edge density in some areas
(Penhollow and Stauffer 2000), habitat quality
may be lower near edges between suitable
habitat and other land cover types than farther
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Table 6.—Relevant life and habitat requisites and their corresponding HSI model parameters from LANDIS for 12 species in southern Missouri

Model parameters

Species Life requisite Habitat requisite and implementation HSI equation
Ovenbird Nesting cover Mature hardwood forest Sl,: Tree age by land type*
and food Sl,: Tree species group
Nesting cover Edge avoidance Sl,: Moving window
analysis on Sl SI, x Sl, x S,
Prairie Nesting cover Early-successional woody Sl,: Tree age by land type
warbler and food vegetation
Large habitat patches Sl,: Patch size algorithm
Nesting cover Edge avoidance Sl,: Moving window
analysis on SI, (Sl, x SL)**x Sl
Hooded Nesting cover Early-successional hard- Sl,: Tree species group
warbler wood vegetation Tree age (see Sl, below)
Food Mature hardwood forest Sl,: Tree species group
Tree age (see Sl, below)
Nesting cover Site productivity Sl,: Land type
and food Interspersion of nesting Sl,: Moving window
and foraging habitat analysis on tree age Sl x (Sl, x Sl,)°**
Pine Nesting cover Mature coniferous forest Sl,: Tree age
warbler and food Sl,: Tree species group SI, x Sl,
Wild Nesting and Forest openings Sl,: Tree age by land type
turkey brooding cover
Adult cover Mature forest Sl,: Tree age by land type
Fall and winter Hard mast Sl,: Model of tree age,
food tree species group,
and land type®
Cover and food Interspersion of life Sl,: Moving window
requisites analysis on SI, and (max{Sl,, [(Sl, + SL)) /
mean of Sl, and S, 2]} x Sl,)°®
Ruffed Fall and winter Hard mast Sl,: Model of tree age,
grouse food tree species group,
and land type
Cover Dense forest regeneration Sl,: Tree age by land type
Large habitat patches Sl,: Patch size algorithm
Food and cover Interspersion of life Sl,: Moving window
requisites analysis on Sl and {max[Sl,, (S, x S1.)°?]
mean of Sl,and Sl x Sl,}°®
Gray Winter food Hard mast Sl,: Model of tree age,
squirrel tree species group,
and land type
Cover Mature forest Sl,: Tree age by land type min(Sl,, SL,)
Black bear Fall and winter Hard mast Sl,: Model of tree age,
food tree species group,
and land type
Summer and Soft mast Sl,: Tree age by land type

fall food
Food

Cover

Interspersion of
seasonal foods
Road avoidance

Sl,: Moving window

analysis on Sl and SI,

Sl,: Distance-to-road
algorithm

[max(Sl,, Sl,) x SL]°*
x Sl,

20
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(table 6 continued)

Model parameters

Species Life requisite Habitat requisite and implementation HSI equation
Bobcat Prey habitat Proportion of early Sl,: Moving window
successional forest and analysis on tree age
openings in home range by land type
Cover Road avoidance Sl,: Distance-to-road
algorithm S, x Sl,
Red bat Roost sites Crown of large, live trees Sl,: Tree age
Land type preferences Sl,: Land type
Water Proximity to roost sites Sl,: Distance-to-water
algorithm
Food Edge between forest Sl, and SI: Moving window max[(Sl, x S, x SI,)**,
canopy and openings analyses on Sl ({SI, x [max(Sl,, SI)J7}°**)]
Northern Roost sites Dead branches on Sl,: Tree age
long-eared large, live trees
bat Large snags Sl,: Tree age
Water Proximity to roost sites Sl,: Distance-to-water
algorithm
Food Forest canopy and gaps Sl,: Moving window
analysis on Sl
Roost sites Interspersion of life Sl,: Moving window
and food requisites analysis on mean of
Sl,, Sl,, and Sl and {max[(Sl, x SI, x SI,)°%,
product of SI, and SI, (SI, x SI,)] x SI}°°
Southern Food and cover Mature forest Sl,: Tree age
redback Moist substrate Sl,: Land type
salamander (SI, x S1,)°®

@ See table 3 for definitions of glade, dry, and mesic land types.
® The hard mast production model was developed by Sullivan (2001). See also figs. 2 and 5.

from edges. Woodward et al. (2001) docu-
mented that prairie warblers in southern
Missouri avoided nesting <20 m from a forest
edge.

Lancia and Adams (1985) observed a high
correlation between point counts of prairie
warblers and HSI values from Sheffield's (1981)
HSI model, which was based on stand age and
stocking densities in the shrub and overstory
layers. Our HSI model for prairie warblers was
similar but included two new spatial factors.
Our first SI defined suitable habitat according to
tree age and land type category (Robinson and
Robinson 1999, Thompson et al. 1992) (table 4,
fig. 2). The second Sl scored suitable habitat
patches (as defined by Sl.) based on their size
using a patch-definition algorithm. Habitat
patches =4 raster cells (0.36 ha) in size received
SI, =0, those =39 cells (3.51 ha) in size received

Sl, =1, and those between 5 and 38 cells (0.45
and 3.42 ha) in size received SI, = (0.32 x patch
size in ha) — 0.13 (fig. 11). The third SI defined
areas within 30 m of an edge between suitable
and unsuitable habitat (as defined by SI.) using
a square, 3- x 3-cell moving window (Wood-
ward et al. 2001). If the minimum value in the
window was SI, = 0, the central window cell
received Sl, = 0.5 because it was near an edge;
otherwise, SI, = 1.

The HSI score for a raster cell was the geometric
mean of SI, and SI, multiplied by SI, (table 6).
Habitat suitability in the study area was greatest
in the interior of large patches, and most young
forest patches resulting from tree mortality or
group-selection cutting were too small to
provide habitat for prairie warblers (fig. 12).
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Figure 10.—
Application of
the ovenbird
habitat quality
model to a
3,261-ha unit of
the Mark Twain
National Forest
in southern
Missouri. There
are separate
images for
suitability as
mature forest
(S1,), suitability
as deciduous
forest (S1,),
suitability as
forest interior
(S1,), and HSI =
SI, x S, x Sl
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Hooded Warbler

Hooded warblers nest in openings and areas
with young hardwood regeneration (Evans
Ogden and Stutchbury 1994). Dense, shrubby
vegetation provides good nesting cover. Hooded
warblers also require mature hardwood stands
for foraging (Evans Ogden and Stutchbury
1994). These two different vegetation types need
to occur in proximity of each other to provide
good hooded warbler habitat. The highest
quality hooded warbler habitat contains both
vegetation types within the size of a typical
territory (0.5-1.1 ha; Evans Ogden and
Stutchbury 1994, Norris et al. 2000). Such
conditions may occur due to single-tree or
group-selection forest disturbances (Annand and
Thompson 1997, Baker and Lacki 1997,
Robinson and Robinson 1999). The only
previously published habitat model for hooded
warblers was a GIS model developed and tested
by Dettmers and Bart (1999). Their model
predicted hooded warbler presence from
topography metrics and the presence of forest. It
was based on their characterization of hooded
warblers in southeastern Ohio as a “hilltop
species associated with the dry moisture
conditions and convex land forms of ridges”
(Dettmers and Bart 1999:157). That description
conflicts with data indicating that in southern
Missouri and northern Arkansas hooded

Figure 11.—Suitability of
habitat patches for prairie
warblers is positively related to
patch size.

2.0 3.0
Patch size (ha)

warblers are associated with mesic sites (Smith
1977, Thompson et al. 1992). Evans Ogden and
Stutchbury (1994:4) also noted that hooded
warblers are “often associated with moist
woodlands and ravines.”

Our HSI model for hooded warblers was a
function of three variables. The first indicated
that cells dominated by pines provided no
habitat (i.e., SI, = 0; fig. 2). All other cells were
assigned SI, = 1. The second SI reflected the
higher densities of hooded warblers on mesic
sites (SI, = 1) than on dry sites (SI, = 0.4) and
glades (SI, = 0) in Missouri (Thompson et al.
1992) (table 3). The third Sl specified a relation-
ship between habitat suitability and the propor-
tions of nesting and foraging habitat in a
territory-sized moving window (3 x 3 cells = 0.8
ha; table 1). Raster cells with dominant trees 1
to 10 years old were assigned a generic code of 1
for providing nesting habitat, cells with domi-
nant trees >60 years old were assigned a generic
code of 2 for providing foraging habitat, and all
other cells were assigned a generic code of 0.
The ideal proportions of generic codes in the
analysis window were 22 percent (2 cells) 1s
and 78 percent (7 cells) 2s (Annand and
Thompson 1997). When observed proportions
were ideal, the central window cell received S,
= 1. Values of Sl declined as proportions
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Figure 12.—
Application of
the prairie
warbler HSI
model to a
3,261-ha unit of
the Mark Twain
National Forest
in southern
Missouri. There
are separate
images for
suitability as
early-succes-
sional forest
(81,), suitability
as large habitat
patches (S,),
suitability as
habitat interior
(S1,), and HSI =
(SI, x SI,)%% x
Sl,.

24

PRAIRIE WARBLER HABITAT SUITABILITY MODEL

Sl 1 Sl 2
v .:_'1.4. L -~
‘--.- ..l.'l'-'l}'l-: B ] 1
i Vg .
e '.I- :.I* : _'Idrl. o P g ﬂ
S S - '\t i,
e B L Al
Sl3 HSI

N
BILEGEND [ | oo ] oa [l os |l ot ] os W F
] o] o2l o+ o5 o=
5

deviated from the ideal according to the follow-
ing equation:
SI, = (1 —|proportion of 1s
|proportion of 2s
If either habitat requisite was absent in the
window, S, = 0 (table 7).

The HSI score was the product of SI, and the

geometric m

amounts of optimal nesting cover and food existed
in the study area, but juxtaposition of those life
nerved — 0-22]) X (L= requisites, as identified by SI,, drastically limited
-0.78)). overall habitat suitability for hooded warblers (fig.
13). As expected, suitable habitat appeared at the
interface between nesting and foraging habitats,
along the edges of large openings, and near recent
group-selection cuts and gaps created by wind.

observed

ean of Sl, and SI, (table 6). Large



Table 7.—Values of S, based on the proportion of cells providing good nesting cover (hardwoods 1-10 years
old) and foraging habitat (hardwoods >60 years old) for hooded warblers in a home range-sized moving window

(0.8 ha = 9 cells) in a southern Missouri landscape. Optimal proportions are 0.22 and 0.78, respectively?.

Proportion Proportion in foraging habitat

in nesting

cover 0.00 0.11 0.22 0.33

044 056 067 078 089 1.00

0.00 0.00 0.00 0.00 0.00
0.11 0.00 029 0.39 049
0.22 000 033 044 055
0.33 0.00 029 039 049
0.44 0.00 0.26 0.34 043
0.56 000 022 029 0.36
0.67 0.00 0.18 0.24 0.30
0.78 0.00 0.15 0.19

0.89 0.00 0.11

1.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00
059 069 079 089 0.79

066 078 089 1.00

0.59 0.69 0.79

0.51 0.61

0.44

2 Sl, = (1 — |[proportion of cells with dominant trees 1-10 years old] — 0.22|) x (1 — |[proportion of cells

with dominant trees >60 years old] — 0.78|).

Pine Warbler

Pine warblers were the only pine-dependent
species we selected (table 1), and they do not
occur in areas of pure hardwood forest
(Johnston and Odum 1956, Neimi et al. 1997,
Rodewald et al. 1999). Densities of pine war-
blers generally increase with stand age (Conner
etal. 1979, Evans 1978, Haney and Lydic 1999,
Thompson et al. 1992) and may also be posi-
tively correlated with distance from streams
(Murray and Stauffer 1995). Lancia and Adams
(1985) observed a high correlation between
point counts of pine warblers and values from
HSI models (Sheffield 1981, Schroeder 1982).
Schroeder’s (1982) HSI scores were the geomet-
ric mean of three variables. Suitability was
positively related to canopy closure of pines and
seral stage of the stand but was negatively
related to presence of a tall deciduous under-
story. Sheffield’s (1981) model described stands
<15 years old and not predominantly pine or
oak-pine as unsuitable and reserved the highest
suitability for stands with high basal area of
pines, high stocking density of pines >6 m tall,
and low stocking density in the understory.

We developed a model similar to the two
previous ones (Schroeder 1982, Sheffield 1981).
Our first Sl was based on tree age, with trees
>60 years old being of the highest quality (table
4, fig. 2). We assumed that in pine stands tree
age was highly correlated with canopy closure
and basal area of pines. Our second variable was
SI, = 1 if the dominant tree species group was
pine or SI, = O if it was not. The HSI score was
the product of Sl and SI, (table 6). Pine forest
limited the location of pine warbler habitat in
the study area, but the tree age variable (SI,)
identified less suitable and unsuitable pine
forests in the HSI map as well (fig. 14).

Although it would have been feasible to deter-
mine the presence and approximate dominance
status of a deciduous understory in cells
dominated by pines (Schroeder’s V,), we chose
not to include it as a variable in our model
because it would be difficult or impossible to
incorporate in applications of our model that are
not based on LANDIS. Therefore, we had to
assume that a high density or tall deciduous
understory was absent in all areas dominated by
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Figure 13.—
Application of the
hooded warbler HSI
model to a 3,261-ha
unit of the Mark
Twain National
Forest in southern
Missouri. There are
separate images for
suitability as
deciduous forest
(S1,), suitability of
land types (SI,),
suitability of
composition of young
and mature forest in
adjacent cells (S,),
and HSI =Sl x (S,
X S1.)°°.
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pines >30 years old. Violation of that assump-
tion would result in our model overestimating
the quantity and quality of pine warbler habitat.

Wild Turkey

The wild turkey is a popular game bird through-
out its range. Schroeder (1985) developed an
HSI model for wild turkeys as a function of
summer-brood habitat and seasonal foods.
Winter home ranges of turkeys in Arkansas were
smaller when acorns, a significant food source,
were more abundant (Badyaev et al. 1996).

Relative abundance of wild turkeys in a predomi-
nantly forested area of southwestern New York was
related positively with proportion of open land,
edge density, and interspersion determined using
satellite imagery of landscape cover types (Glennon
and Porter 1999). Badyaev (1995) and Thogmartin
(1999), however, found that nesting females in
Arkansas selected large patches of habitat and
avoided areas with high edge density. They selected
nest sites in clearcuts and other forest openings and
in pine st