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This paper seeks to review and to contrast the main streams of thought in Multiple Criteria Decision
Making (MCDM) theory and practice, without attempting to review all MCDM methods in detail.
The main purpose is to identify pitfalls in the usage of various approaches, and to suggest approaches
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1. MULTIPLE CRITERIA DECISION
MAKING PROBLEMS

THE succEeEssEs of early OR/MS projects
were at least partially due to the fact that they

addressed operational problems, such as pro- -

duction scheduling and inventory control, for
which more-or-less well defined objectives could
be identified with little controversy (e.g. mini-
mize cost). As the sphere of application of
Quantitative management science moved from
these operational decision making situations to
higher level managerial planning and decision
making, well defined problems gave way to what
Ackoff [1] (in his by-now famous phrase) termed
‘messes’. One consequence of this shift is that
decision making goals became increasingly im-
precise. The key philosophical departure point
defining Multiple Criteria Decision Making
(MCDM) as a formal approach to types of
problem solving (or mess reduction), lies in
altempting to represent such imprecise goals in
terms of a number of individual (relatively
Precise, but generally conflicting) criteria. Over
_‘he past two decades, MCDM has developed
Into a discipline in its own right, with specialized
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conferences or specialized streams at OR/MS
conferences, and with the first MCDM journal
starting publication in 1992. As MCDM thus
stands on the threshold of adulthood, our
purpose with this paper is to attempt a critical
look at what the MCDM field has achieved over
the two decades, what practical tools are avail-
able, and what has still to be achieved. This is
by no means a comprehensive review of MCDM
theory and approaches, but_ rather an assess-
ment of broad streams of thought and their
impact on real-world problem solving (actual or
potential). Our assessment of the methodologies
will be based on the operational usefulness of
each (admittedly a somewhat personalistic judge-
ment), where ‘operationally useful’ requires at
the very least (a) ease of use by non-experts, (b)
transparency of the logic of the method to the
decision maker, and (c) freedom from ambiguity
regarding interpretation of inputs required from
the decision maker, For more comprehensive
reviews, the reader is referred to [2,9, 16, 41].

Let us first introduce some nomenclature. We
define A to be the set of decision alternatives,
from which the decision maker (DM has to
make a selection of an a € 4. Identification of
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the set A by no means a trivial task, and it is not
even clear that 4 can be pre-defined before the
start of analysis (see for example [55] for an
_in-depth discussion of the manner in which the
stresses generated during the search for the most
preferred element of A can have the synergistic
effect of bringing new decision alternatives into
play). Nevertheless, it still seems useful to con-
sider methods of analysis applicable to a fixed
decision space A, as this is what formal MCDM
methodologies and algorithms in fact purport to
do, even though we are fully cognizant of the
fact that this analysis may form just one cycle
(of many repeated cycles) in the creation or
discovery of a course of action which will
resolve or reduce the ‘mess’. A differentiation is
often made in MCDM theory [18] between cases
in which A is defined explicitly by a finite list of
alternative actions (sometimes termed multiat-
tribute decision making), and those in which 4
is defined implicitly by a mathematical pro-
gramming structure (sometimes termed multi-
objective optimization theory). We shall not
make such a differentiation unless essential to
the discussion.

A further defining feature of the MCDM
model is of course the set of criteria by which
elements of 4 are to be compared. Once again
the identification of the criteria relevant to a
particular context is a non-trivial task. Further-
more the selection of such criteria is part of the
modelling and problem formulation process (i.e.
has no objective existence), a fact that is fre-
quently under-emphasized. Criteria are com-
monly developed in a hierarchical fashion,
starting from some general but imprecise goal
statement, which is refined into more precise
sub- and sub-sub goals. Terminology is not
entirely consistent between authors, but a useful
general definition of a criterion is that of
Bouyssou [10] as a tool allowing comparison of
alternatives according to a particular signifi-
cance axis or point of view. As with the gener-
ation of alternatives, we shall not here discuss
the identification of criteria, but refer the reader
to [21, 34, 50] to name a few who discuss inter
alia a variety of desirable properties which
should be satisfied by a set of decision criteria
(such as independence, in the sense to be dis-
cussed in Section 3, operational clarity of defi-
nition, and avoidance of double counting of
issues). In this context, it is worth noting the
paper of Weber et al. [52] who show how
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variable levels of detail in different parts of the
hierarchical tree of criteria can affect the resu]yg
obtained in the subsequent analysis.

It is generally assumed that each criterion cap
be represented by a surrogate measure of
performance, represented by some measurable
attribute of the consequences arising from
implementation of any particular decisiop
alternative. For convenience of exposition, we
shall also adopt this assumption, viz. that with
each alternative a € A we can associate a vector
of attributes z% = (z{, z4, . . ., z3), where p is the
number of criteria, and z{ is the attribute repre-
senting the outcome of decision alternative g a5
it affects criterion i. We note however, that thig
can be an oversimplification, particularly where
a criterion represents a specific group interest, as
then it may be difficult to associate value to the
group with a single objectively measurable at-
tribute. For the most part in this paper, we
assume that the vector z* does not depend on
exogenous and/or random events, and can thus
be determined at least approximately for each
a € A. We comment briefly in Section 8 on the
problems which arise when the attributes are
stochastically generated. For the purposes of
exposition, and without loss of generality, we
shall suppose that the attributes are defined in
an increasing sense, i.e. that the DM prefers
larger to smaller values of each z,, all other
things being equal.

If for two alternatives a and b, z¢ > z? for all
1 <i <p, without total equality, then we say
that the alternative represented by z° dominates
z%. Alternatives which are not dominated by any
other are also termed Pareto optimal or efficient.
It is often useful to standardize attribute values
in terms of the ideal and nadir values for
each attribute, i.e. the best and worst available
values defined by z*=Max,.  [zf} and
z? = Min, ., {z°} respectively.

In Section 2 we comment briefly on the
general aims and structure of MCDM analysis,
following which in Sections 3 and 4 we review
theoretical and practical principles of the two
best known classes of approach, viz. value func-
tion (sometimes termed utility function or scor-
ing) approaches, and goal programming and
variations thereof. In Section 5 we give attention
to the rather different class of methods using
‘outranking’ concepts, and the role which they
can play in MCDM. We briefly consider the
‘fuzzy set’ approach in Section 6. The us¢ of
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descriptive multivariate statistical techniques,
which has received relatively little attention in
the MCDM literature, is discussed in Section 7.
We comment on the problem of uncertainty in
Section 8, before drawing together the discus-
sion in terms of conclusions regarding what is
available to the practitioner today, and what
areas of research in MCDM still need attention.

2. THE GOALS OF FORMAL MCDM
TECHNIQUES

Multicriteria decision making is a human,
managenal task. It can and never will be auto-
mated by tools, techniques or algorithms. The
aim of any MCDM technique is thus to provide
help and guidance to the DM in discovering his
or her most desired solution to the problem (in
the sense of that course of action which best
achieves the DM’s long-term goals). Some
philosophical debate is conducted from time to
time regarding whether or not the preferences of
the DM which would define best achievement of
goals pre-exist in the DM’s mind prior to the
analysis, or whether it is formed in the process
of seeking a solution to the decision problem.
From a practical point of view, the distinction
is, however, often not so important. Either way
round, any MCDM technique seeks to make the
DM’s search as effective and efficient as poss-
ible, maintaining some degree of consistency
in the search, or at least warning the DM of
inconsistencies as they arise, without imposing
undue and unjustifiable structure on the
decision maker.

MCDM methods may be used in two con-
texts. In the first, the DM would be either a
single individual or an essentially homogenous
group, seeking to make a decision which does
not seriously impact, or require justification to,
other parties. In this case, methods can be
relatively informal, and the rationale behind the
decision reached does not need substantial
documentation. This contrasts with the context
in which the DM (individual or group) has to
make decisions on behalf of a much larger
group or community, or has in fact only to
generate a short-list of alternatives for consider-
ation elsewhere. This might occur with man-
agers in large corporations, or with public
Servants. In such cases, the rationale for choices
Mmust be clearly documented, and justice must be
Seen to be done, in the sense that criteria might
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refer to different members of the community
being served, and proper consideration of each
interest must be demonstrated. This require-
ment necessitates the use of rather more formal
methods of analysis, even where these may be
less efficient, and/or may impose structures (of
‘rationality’, for example) which may not
strictly be justifiable.

The context of any particular case needs to
be taken into consideration when selecting a
particular MCDM method for use. One distinc-
tion between methods which is particularly rel-
evant in this contex: is that between ‘prior’ and
‘progressive’ articulation of preferences [16, 18],
where methods in the latter category are some-
times termed ‘interactive’. Methods of prior
articulation of preferences require the DM to
specifiy value judgements somewhat in isolation
from the particular choices at hand, and these
are then translated into the particular choice, or
choices, from A4 which are consistent with these
preferences. This approach is relevant particu-
larly in contexts where full justification and
rationale for decisions are required. Methods of
progressive articulation of preference allow the
DM to explore the decision space systemati-
cally, without having to specify any prior prefer-
ences. This is more efficient, and requires less
sweeping assumptions regarding preference
structures, but is also more open to manipu-
lation by skilled users, and is thus less defensible
when solutions have to be justified and/or
rationalized.

In the sections which follow, we attempt to
illustrate the extent to which each MCDM
technique can be implemented in either the prior
or progressive articulation mode (or both).

3. VALUE OR UTILITY BASED
APPROACHES

3.1 Basic principles of preference measurement

For the quantitatively oriented manager or
management scientist, there is great appeal in
being able to establish some means of associat-
ing a numerical score or value with each de-
cision alternative, after which choice of the
optimal alternative becomes automatic. This
gives a sense of objectivity to the process, and
certainly helps to focus discussion on the ‘bor-
derline’ choices, and to defuse some of the
emotion, in a group decision making setting. In
particular, and in the interests of simplicity and
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parsimony, it is common to want to seek a value
function based on a simple addition of scores
representing goal achievement according to
each criterion, i.e. to represent the total score or
value of the alternative described by the at-
tribute vector z as follows:

V@ =5 () 0
i=1
where v,(z;) is the score associated with a level
of performance for criterion i represented by the
attribute value z,.

At a fundamental level, V' (z) need not be
endowed with any properties other than that of
preference ordering: z° is preferred to z° if and
only if ¥ (z%) > V(z*). The behavioural assump-
tions necessary to ensure the existence of such a
value function preserving preference ordering
are well-known (cf. [21, 50]), and yet frequently
seem to be overlooked. Keeney and Raiffa [21]
term the assumptions preferential independence
of the criteria; in essence this means that a
decision maker can state whether an offered
trade-off between any two attributes, represent-
ing two criteria, is or is not acceptable, “all
other things being equal” (i.e. no other at-
tributes varying), without requiring knowledge
of performance levels achieved for the other
attributes. It is in fact evident that the concept
of trade-off is central to the interpretation of an
additive value function. In particular, an in-
crease of one unit in v;(z;) will always precisely
compensate for a loss of one unit in v;(z;), “all
other things being equal”, irrespective of the
performance levels achieved for any attribute
(including i and j). One implication is that unit
increments in v;(z;) have the same marginal
value to the decision maker, in terms of trade-
offs with other criteria, irrespective of the value
of z,, i.e. v;(z,) represents an interval scale of
preference. The scores implied by the additive
form (1) thus represent a very specific form of
currency in which all criteria can be measured,
and are not any arbitrary ordinal preference
measure.

Keeney and Raiffa ensure (as far as is practi-
cally possible) that the scores they generate
satisfy this constant trade-off condition by con-
struction. Their ‘lock-step’ and ‘mid-value split-
ting’ methods, build up the v,(.) functions
precisely by considering pairwise trade-offs be-
tween which the decision maker is indifferent, or
increments judged to be of equal importance.

The problem is that these approaches can b
rather tedious and mystifying to the decisiop
maker, and in consequence it is very appealing
to represent scores in the form:

v,(z) = wu(z) @

where:

(a) u,(z;) is a marginal utility function 3.
sessed separately for each criteriop
(without reference to trade-offs be.
tween criteria), and normalized tg
some convenient scale (e.g. 0~100);

(b) w, represents a weight associated with

the importance of the criterion i, and is

in effect used to scale the individua]
scores for each criterion on to a com-
mensurate scale.

The marginal utilities may be evaluated in-
directly by the standard decision analysis tech-
nique of ascertaining certainty equivalents for
two-point lotteries, or by direct scoring (e.g.
[50], Section 7.3). In direct scoring, the ideal and
nadir are given scores of for example 100 (or 1)
and 0 respectively, after which other values are
fitted into this range in such a way that equal
score differences correspond to equal strengths
of preference for one over the other. The
weights can be determined directly by evalu-
ation of the importances of the swings from best
to worst on each criterion, relative to either the
most or least important (e.g. [50], p. 286), i.e. the
relative importances of the ranges represented
by [z?,z*] are assessed directly for each at-
tribute relative to the others. It seems natural to
assess these importance weights in ratio terms,
i.e. to assess directly the ratios w,/w;. But it is
important to note that the additive score func-
tion imposes a very specific meaning on to the
weights. Suppose for purposes of argument that
the marginal utilities are scaled on to the [0-1]
interval, and that w, < w;; then the ratio w,[w, 1S
precisely the maximum proportion of the utiliF)’
range on criterion j that would be sacrificed, In
order to increase attribute i from z? to z . The
fundamental principle is that the weights have 2
natural implicit trade-off interpretation, thal
can only be assessed in the context of the ranges
of options available. (For example, the ‘import”
ance’ of risk to human life relative to cost
savings can only be assessed in the context of 3
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particular range of possible outcomes.) The
‘swing-weighting’ approach of von Winterfeldt
and Edwards [50, p. 286] uses this principle
explicitly. Whether simpler procedures such as
setting the weight of the most important at-
tribute to 100, and scoring others relatively,
satisfy the trade-off property or not is a moot
point; but even in such a procedure, the range
of values being assumed must be made evident
explicitly for the approach to have any justifica-
tion at all.

In principle, any requirement that the value
function preserves strengths of preferences as
expressed by the DM between different gains or
losses in one or more attributes, imposes a
somewhat stronger requirement on the value
function than the simple need to preserve order.
On theoretical grounds this demands either
stronger behavioural assumptions than mere
preferential independence in order to justify the
simple additivity in (2), or a need to aggregate
the individual marginal utility functions in ways
other than additive, for example in the multi-
plicative form:

l+kU((z)= l!] [1 + kw,u,(z)) 3)
i=]

Fortunately, it seems that little is lost in retain-
ing the assumption of additivity, particularly
when outcomes are deterministic (but see Sec-
tion 8). Any modelling imprecisions are likely to
be outweighed by the high degree of imprecision
in measuring the u;(z;) and w; (cf. [50], Section
1.1). Provided, therefore, that adequate care is
taken in capturing non-linearities in the u;(z,),
and in ensuring that the importance weights w,
are assessed in the proper context, there is good
" reason not to attempt any more esoteric prefer-
ence models than that given by (2). This form of
additive model is well-justified theoretically, and
is easily understood, in that the connections
between the inputs provided by the decision
maker and the outputs obtained are not hidden
behind a screen of complex mathematical ma-
nipulation. Belton [4] or Belton and Vickers [7]
give a useful description of the practicalities of
this approach, with reference to the sensitivity

analysis which should accompany it.

We have dealt with the principles underlying
the use of additive scores or value functions
at some length, because anecdotal evidence
Suggests some form of additive scoring is a very
Wide-spread approach to resolving multi-criteria
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decision problems in practice. This might not be
evident from the literature, which tends only to
report relatively sophisticated applications of
multi-attribute value or utility theory. It is the
author’s experience however, that when decision
makers, particularly in a group or committee
setting, are confronted with difficult multi-
criteria choices, they almost instinctively turn to
some form of simple scoring. In fact, our experi-
ence is that more time is spent in convincing
clients not to use some inappropriate scoring
technique, or in warning of the dangers of
interpretation of such scoring, than in present-
ing alternative MCDM approaches. If this prac-
tice is so wide-spread, it is probably most
effective to retain the natural and easily under-
stood additive scoring, instead of more sophisti-
cated methods, but to ensure that the definition
of criteria, and the scoring methods used, are
properly justified and understood by those
providing the inputs.

3.2 The Analytic Hierarchy Process (AHP)

Although, as we have indicated, our rec-
ommendation is to assess additive score func-
tions in a very simple straightforward manner,
we do need, for completion, to comment on the
Analytic Hierarchy Process (AHP) method-
ology introduced by Saaty [34], which also
makes use of an additive value function of the
form given by (2) (although the terms used in
the previous section are not conventionally used
in AHP). There has developed an AHP school
quite distinct from the rest of MCDM thinking.
A variety of applications have been reported
[48]. Many decision makers seem to find AHP
an appealing tool to use, yielding results which
are at least plausible in many settings, although
this may at least partially be due to the use of
the instinctively natural additive aggregation,
as we have discussed above. In spite of
this, a number of writers, many of them
after extensive experience with AHP (e.g.
[s, 6, 14, 20, 24, 25, 38] have criticized various
fundamental aspects of AHP, which criticism
we now attempt to understand in the light of the
principles discussed above.

Saaty, and other proponents of AHP, have
strived to emphasize that the axiomatic basis of
AHP is fundamentally different from that of
utility theory (e.g. [35]). In fact, there seems to
be a substantial divide between the AHP school
and the remainder of the MCDM field, in
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spite of pleas for more cross-fertilization (e.g.
(14, 24]). The differences in philosophy notwith-
standing, however, the basic trade-off impli-
cations of the -additive preference scoring
function, as we have discussed them, apply
whatever the axiomatic justifications, and it is
here that the first cause for concern arises. The
basis of AHP, is that the decision maker pro-
vides assessments of the ratios of (in our nomen-
clature) u;(z%)/u;(z?) for each attribute i, and for
every pair of available alternatives @ and b. The
resulting values for u;(z;) would appear to be on
a ratio scale of preferences, and not on the
interval scale as implied by the additive form.
Consider, for example, two criteria i and j
having equal importance weights, and two
alternatives a and b differing only on criteria i
and j, and such that u,(z¢)/u;(z}) = u,(z})/u;(z}).
It will not in general be true that a and b have
equal scores on (1); and yet when a decision
maker expresses equal ratios in this context (i.e.
that preferences for a over b on criterion i is of
the same importance as preference for b over a
on criterion j), it is difficult to see that the DM
has anything else in mind but that the loss on
one criterion when moving from alternative a to
b is exactly compensated for by the gain in the
other. Lootsma [24] argues in effect from this
observation that it is the logarithm of Saaty’s
marginal value scores which should be used in
the additive function, and this does seem to be
more consistent with our earlier arguments.

A second point of contention regarding AHP
derives in effect from the practice in AHP of
normalizing the marginal utility functions such
that:

Y ouz=1 4)
for each criterion i. Since the range of values for
u;( ) differs from criterion to criterion, it follows
that the magnitude of the effect of a change in
z; is determined partly by this range, and partly
by the weight w;. This makes the meanings of
the weights more difficult to interpret than with
swing weights. This leads to the phenomenon of
rank reversal in AHP, first pointed out by
Belton and Gear [5]. They showed that the
relative rankings of two alternatives according
to (1) can change depending on what other
‘irrelevant’ alternatives are available, unless the
criterion weights are at the same time modified
(cf. also [4]). If the other alternatives do not
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affect the ranges of responses, however, it is
unlikely that a DM would want to change thege
weights. This phenomenom led Dyer [14], wity
perhaps some hyperbole, to conclude that the
AHP rankings are arbitrary. Saaty and Vargas
[37] argued in response to Belton and Gear thag
human preferences are affected by the presence
or absence of other alternatives, due either tq
changed ranges of options available, or to g
realization that a previously unrecognized cri-
terion should also be taken into consideration,
These effects need, however, to be modelled
explicitly, and can then be accommodated intg
any MCDM approach. As it stands, there is ng
evidence, or even prima facie motivation, as to
why the AHP-induced rank reversal is in any
sense a good model of either of these effects, and
without such motivation the rank reversal must
be seen as a disturbing property of a normative
decision-aiding procedure. Saaty [36] has
pointed out that rank-reversal can be avoided
by applying what he terms the ‘absolute
measurement mode’ of assessment, viz. identify-
ing a fixed set of possible outcomes for each
criterion i, z;, z7,..., z7" say, and assessing
u;(z])/u;(z}) across these m possibilities indepen-
dently of the actual set of alternatives currently
under consideration. This would seem to be the
better approach in most cases, although it is not
commonly emphasized in discussions on AHP.

For completion, we should also mention three
further practical problems in applying AHP.
Firstly, the manner in which AHP is often
implemented encourages users to assess import-
ance weights in isolation from the specific
ranges of options available. Weights cannot be
expressed in the absence of context, and the
result can easily be that the users assess weights
relevant to a context different to the current one.
Secondly, the usual form of input required by
AHP is not the numerical ratio described above,
but rather a preference statement on a nominal
nine-point scale which is interpreted as a ratio.
(Thus for example, a value of 5 on Saaty's
scale corresponds to the nominal descriptiop
‘...more important than...’, but is used as if
the decision maker has asserted that u(z{)
ufz?) =5 or w,/w, =5, as the case may be.)
Justification for this quantitative interpretation
of a nominal scale is anecdotal, and has been
questioned (cf. [24]). The final practical problem
relates to the insistence in AHP applications _0“
using the eigenvector procedure, for estimating
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the marginal values and criterion weights from
the ratios provided. If all the ratios are fully
consistent, then the eigenvector procedure recov-
ers the correct individual values, but then so do
many other procedures. Alternatives such as
logarithmic least squares (e.g. [24]), and what
Islei and Lockett [20] term geometric least
squares have been suggested on other theoretical
grounds, and have a major practical advantage
over the eigenvector method, in that they do not
require that all pairwise comparisons be pro-
vided, a task which can quickly become ex-
tremely tedious and time-consuming.

In spite of the above criticisms, the rankings
generated by AHP may still be useful in some
contexts, especially when applied under the guid-
ance of a skilled facilitator. Nevertheless, AHP
needs to be used with considerable caution, and
use of the simpler procedures of Section 3.1 may
be more justifiable (although, of course, any
scoring function can only give guidance to the
decision maker, and cannot be viewed prescrip-
tively). A further advantage of the direct scoring
methods of Section 3.1 is that the processes
involved are under the direct control of, and
quite transparent to the decision maker, in
contrast to the more esoteric processing occur-
ring in AHP (i.e. the translation of the nominal
into a ratio scale, and the eigenvector analysis).

3.3 Use of value functions in interactive mode

The problems with a priori articulation of
value functions as discussed above, are that the
value functions must be valid over wide ranges,
and that the DM must be able to express global
preferences (e.g. the importance weight of the
full range of change in one criterion). Methods
of progressive articulation of preference can also
be based on the existence of a value function such
as that of (1), or a more general form, but with
the advantage that any assumptions and/or
value judgements need only apply over restricted
ranges. Perhaps the first such attempt is the
method of Geoffrion et al. [15]. They require the
decision maker to provide trade-offs in the
vicinity of a particular feasible solution, which
is equivalent to giving ratios of partial deriva-
tives:

av(z)/é:z,

vV (@)/é:, ®

These are sufficient to provide the search direc-
tions for standard non-linear programmng
OME 20/5-6—C

algorithms, although the step length has also to
be judged interactively by the decision maker.
The Geoffrion-Dyer-Feinberg algorithm has
become a standard of comparison in the litera-
ture for assessing the performance of other
algorithms. It is however not very efficient in
using preference information, as trade-offs from
one iteration are entirely discarded before the
next, and there has been little serious practical
use reported of the approach. One of the chal-
lenges to research in MCDM is to develop
interactive procedures in which trade-offs are
assessed at various points in the search for a
solution, and are used to constrain later search
even though trade-offs may change during the
course of this search.

Specifically within the context of multiple
objective linear programming, some interactive
methods have developed, based on a full lin-
earization of (1) into the form:

VxS iz, ©
=l

Although such a linearization must of necessity
only have local validity, the methods will con-
verge to the true optimum, provided that the true
value function satisfies the relatively mild con-
dition of pseudo-concavity. This follows from
the fact that if the set of feasible attribute vectors
z is convex (as must be true in multiple objective
linear programming), then the true most pre-
ferred solution will maximize (6) for some set of
A; weights. Two approaches of this type are those
of Steuer [41], Sections 13.4 and 13.5, and of
Zionts and Wallenius [59, 60]. Both work on the
basis of placing increasing restrictions on the
allowable range of values which the 4;s may take
on, based on preference judgements expressed by
the decision maker. In the case of Zionts—
Wallenius, the decision maker is required to
compare a sequence of pairs of attribute vectors,
and to select the most preferred in each such pair.
Suppose therefore that the decision maker states
that vector z* is preferred to vector z this
implies that the 4;s must satisfy a constraint of
the form:

S 2t - 214,20 ™
iml
With careful selection of the pairwise compari-
sons to be made, the above constraints quickly
reduce the range of feasible weights to the
point where all generate the same optimal basic
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solution to the LP. This strictly only generates
the most preferred basic solution; a more pre-
ferred solution may be found on adjoining
facets of the LP, which would have to be found
during a secondary search, as described in [60],
but this is unlikely to have serious conse-
quences in LPs of realistic size. Stewart [43, 44]
has suggested an extension of the Zionts—
Wallenius scheme which does evaluate ad-
ditional non-basic solutions as well.

The Steuer approach starts by generating
a small number of sets of weights over a
wide range, and computing the corresponding
solutions maximizing (6). The decision maker
indicates which of these is least preferred, and
this leads to excluding part of the range of
possible weights (according to a somewhat
heuristic algorithm, details of which can be
found in the original reference). Here, too,
eventually a point is reached where all remain-
ing sets of weights generate the same solution
to the LP.

Both the Steuer and the Zionts—Wallenius
methods are most conveniently applied in the
multiple objective linear programming context,
but can in principle be applied whenever the
space of feasible attribute vectors is convex. In
fact this extends directly to the discrete case,
provided that the attribute vectors correspond-
ing to the discrete alternatives lie on a convex
surface. The Zionts—Wallenius idea has been
extended to more general discrete problems by
Korhonen et al. [22], but the efficiency of this
in terms of use of decision maker’s time is
not clear. The extension discussed in Stewart
[43,44] does apply equally well to general
discrete problems.

Although the Steuer and Zionts—Wallenius
ideas appear to be simple and efficient to im-
plement, there is relatively little practical im-
plementation reported in the literature, apart
from that reported by the authors themselves.

4. GOALS AND REFERENCE POINTS

While the use of some form of scoring or
value function may be appealing to the quanti-
tatively oriented, and in fact widely used in the
quest for ‘objectivity’, the earliest formal
MCDM methods were of the goal program-
ming form (attributed generally to Charnes
and Cooper [12]). Useful reviews of the devel-
opment of goal programming (GP) are found

in [17, 19, 54], while [32] gives a comprehensiye
bibliography of work up to 1982. In some
senses, GP can be seen as an operationalizatiog
of Simon’s ‘satisficing’ concept. According to
this model (cf. [39], pp. 272-273), the naturg]
decision making heuristic is to concentrate ip.
itially on improving what appears to be the
most critical problem area (criterion), until j
has been improved to some satisfactory level of
performance. Thereafter, attention is shifted to
the next most important issue, and so on. Goal
programming  formalizes  this  heuristic,
although we should note that Simon did not
view this heuristic as necessarily desirable, but
merely that it is a response to bounded ration-
ality. (In the introduction to the third edition
of Simon [39], he refers to: ... human beings
who satisfice because they have not the wits to
maximize’.)

We suppose therefore that for each attribute
i (representing a particular criterion of evalu-
ation), the decision maker can specify some
desirable goal or target level of achievement,
T,, say. If the targets T, are realistically
specified, then there may exist only one (or at
most a small number) of elements of 4 such
that z, > T; for all attributes i (recalling our
convention that each attribute is defined to be
increasing in preference).

In general, however, the decision maker may
find it extremely difficult to know what are
realistic targets to set; there may then either be
no alternative, or very large numbers of
alternatives, which satisfy the goals. Tra-
ditional GP assumes that there are some absol-
ute target levels, which can be specified almost
context-free, above which the decision maker
will always be satisfied. It is implicitly assumed
to be very unlikely that any solution exists
satisfying all the goals; but if there are any,
then any such solution will be entirely satisfac-
tory, and there is no further problem. Since, by
assumption, however, such a fully satisfying
solution will probably not exist, the aim of GP
is to find a solution which is as near as possible
to the target. This requires some definition of
‘distance’, or measure of discrepancy from the
target, which is always of a somewhat ad hoc
form (in the sense that it is generally more
difficult to link such distance measures to be:
havioural assumptions, than it is for the
value function scores discussed in Section 3)-
Three possible forms of discrepancy have been
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-proposed, which can be used either singly, or in
combination with each other:

be classified into ordered importance
classes, and the pre-emptive rule ap-
plied only between classes using an

(a) Archimedean: Weights w;, are associated Archimedean measure of discrepancy

with each attribute, and the alternative
a € A is selected which minimizes:

i w,- Max[0; T, — z?] (8)

i=}
Clearly this is nothing more than a
variation of the additive preference
function given by (1), with little check
on whether the assumptions of the ad-
ditive function are satisfied. Neverthe-
less, when discrepancies are small 1t is
a plausible distance measure (between a
desired point and the feasible region).
When discrepancies are large, however,
the results can be quite at variance with
reasonable expectations. No cogni-
zance is taken of the fact that large
deviations are likely to be of greater
concern than small; it is for example
quite possible that the ‘optimal sol-
ution’ will have small or zero deviations
from target on most criteria, but very
large deviations for a few, where these
few may not necessarily be by any
means the least important. This prob-
lem is ameliorated by using a metric
other than L, in (8), for example L,,
but this introduces a further ad hoc
element. The special case of L, how-
ever, is of particular interest, and is
discussed under (c) below.

(b) Pre-emptive: According to Hannan

[17], this discrepancy measure was in-
troduced in order to circumvent the
difficulty of specifying the weights w; in
(8), and certainly became at one stage
almost the standard approach. In the
simplest form of pre-emptive approach,
the criteria are first ordered from most
(i=1) to least (i =p) important.
For the first criterion, define z{ =
Min[T,, z}], and restrict the set 4 to
those alternatives a for which z{ > z{",
adjusting the ideals z* for all other
criteria accordingly. This process is re-
peated for each criterion in turn, until
such time as A is reduced to a single
element. More generally, criteria may

(c)

from the target within each class as a
surrogate criterion representing the
class. The pre-emptive approach led to
quite elegant variations on the simplex
method when applied to multiple objec-
tive linear programming, but as a pref-
erence model is questionable, unless the
goals are very realistically set. The main
weakness is that no trade-off is allowed
between importance classes, even if
major gains are achievable on one
attribute with infinitesimal losses on
another. This appears to be massively
at variance with human preference
structures (e.g. many increase their risk
of death every day for the minor con-
venience of using their own cars rather
than public transport, or walking!). We
would concur with Hannan [17, p. 539]
in his comment “Thus preemptive GP
should be used only when the priorities
truly are preemptive, and not as a
surrogate for problems with commen-
surable goals just to avoid specifying
weights for the goals”. In our experi-
ence it is rare for priorities to be ‘truly
preemptive’.

Tchebycheff, or Min-Max: This is a
useful alternative to the traditional dis-
crepancy measures, i.e. Archimedean
with the L, norm or pre-emptive, but
retains their simplicity (e.g. LP
methods can still be applied to the
MOLP porblem using this approach).
The idea is to minimize the maximum
weighted deviation, i.e. to select the
alternative aeA which yields the
smallest value of Max, ¢; ¢, wilT, — z]]
(truncated at zero if z¢ > T, for all ).
Although in a limiting sense this re-
mains an Archimedean measure, based
on the L, norm, it turns out to be a
much more robust measure. For any
reasonably plausible target values, sol-
utions are generally quite acceptable, in
the sense that some of the silly answers
generated by the other two discrepancy
measures cannot occur, and often not
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overly sensitive to choice of weights. In
fact, the Tchebycheff procedure seems
to be closer to the spirit of the satisfic-
ing heuristic, by ensuring that the most
urgent criterion always receives maxi-
mum attention. There is one technical
problem however: it is possible that ties
may occur (i.e. different alternatives
giving the same minimum discrepancy),
in which case the algorithm may select
an alternative which is dominated. We
could avoid this by ensuring that the set
A is Pareto optimal at the outset, but if
this is not practical, then the problem
can be overcome by modifying the
measure to one of minimizing:

Maxg ¢;cqwilT, —2i] + € i w;z{ )
i=|
where ¢ is a small positive constant.
Expression (9) has been motivated es-
pecially in the context of interactive
goal programming ideas (cf. [S3]), but
appears to be equally appropriate to
the standard GP approach.

GP has a real advantage over value/utility based
approaches when the number of criteria be-
comes large (greater than about 10, perhaps), in
that the construction of trade-offs and/or value
functions can become increasingly tedious. This
is particularly true when the numbers of values
possible on each criterion is also large (or
perhaps a continuum). Of course, with large
numbers of criteria, GP also suffers from the
difficulties entailed in establishing weights sub-
jectively. Nevertheless, especially with the
Tchebycheff norm, GP is probably the method
of choice for the purpose of screening a large (or
infinite) number of alternatives down to a short-
list, when the number of criteria is large.
Weights will not then play an overly important
role, and can be chosen purely on consider-
ations of scaling (e.g. ensuring that the ranges
between T; and z. have equal weight in each
case, as in [28]).

One problem in applying GP with purely
‘prior articulation of preferences’ is that it can
be difficult for DMs to specifiy goals meaning-
fully a priori. It seems therefore that, where
possible, GP should be used in an interactive
(‘progressive articulation of preferences’) mode,
and in fact lends itself easily to such an ap-

proach. An initial set of goals can be specifieq
(perhaps even simply the ideals for each cf.
terion), and the GP solution found. This sol-
ution is presented to the DM who may thep
wish to modify the goals in the light thereof. The
process can be repeated as often as needed. [y jg
in fact difficult 1o believe that GP is ever useq
in any other way!

The above interactive GP approach can be.
come extremely unstructured or ‘hit-and-misg’
although one attempt at introducing more struc.‘
ture within essentially the standard GP structure
above may be found in Masud and Hwang [28).
Other authors have, however, suggested vari.
ations of the broad GP theme specifically for
interactive implementation, but very often these
are correctly classified as reference point
methods to use a more general term. Within this
more general context, the ‘reference point’ need
not necessarily be aspiration levels for each
criterion (beyond which the DM is ‘satisfied’),
but could be either lower bounds on desirable
options for each, or more simply an estimate of
a likely acceptable compromise position. One of
the earliest of these variations is the Step
Method (STEM) of Benayoun et al. [8]. The
distinguishing feature of STEM is that at each
phase of interaction, the DM, after observing
the last solution obtained, indicates the maxi-
mum amount he would be prepared to sacrifice
on each criterion (possibly zero for some, but
not for all criteria). The maximum sacrifices
allowed are converted into hard lower bounds on
performance for each criterion, and further
analysis is restricted to those criteria for which
no sacrifice was accepted. STEM thus maintains
two sets of reference points, viz. the ideals which
serve as goals, and lower bounds imposed as
hard constraints.

The Interactive Multiple Goal Programming
(IMGP) procedure of Spronk [40] also works in
terms of two sets of reference levels which
converge towards each other. The nadir values
are set as lower bounds, and the ideals as
‘potentials’ representing the best that can be
achieved. At each iteration, the DM examines
the lower bounds (rather than a specific alterna-
tive), and indicates which of these should b¢
improved first. A tentative increase in the lowef
bound for this criterion is implemented, and the
effect on the potentials with this tightened cot
straint on acceptable values is calculated and
displayed to the DM. If the DM accepts that the
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loss in potential is acceptable, the new lower
bound is made definitive, and the next phase of
interaction starts; otherwise the tentative in-
crease is reduced systematically until the losses
in potential are acceptable. In some practical
experience [45], we have found this procedure to
be relatively slow, but to produce very satisfying
results. One particularly useful property of
IMGP is that the DM is not required to sacrifice
anything which he may perceive he has already
gained. This is important in that people are
loathe to accept sure losses, and may tend to be
too cautious in lowering aspirations in more
conventional goal programming, leading to
early termination at a poor solution. A fairly
similar approach to IMGP, but which allows a
degree of backtracking is the PRIAM method
[23].

It was Wierzbicki [53], however, who really
formalized the concept of the reference point
approach. He clearly perceived of the reference
point as neither an ultimate aspiration level
(beyond which lies satisfaction), nor merely a
minimum necessary level of performance. In
fact different decision makers may differ con-
siderably in the degree of caution with which
they specify goals or reference levels. It is necess-
ary therefore not only to minimize measures of
underachievement, but also to maximize over-
achievement as far as is possible in a balanced
manner. In effect, he defines a scalarizing func-
tion to be optimized, which is really a surrogate
value function, but which is defined so as to give
first preference to improving the worst under-
performances relative to the reference point. A
typical form of scalarizing function is essentially
that given in (9), but without truncation to zero
(as in standard GP) when z, > T,, and with the
weights proportional to the reciprocal of the
range from nadir to ideal. The procedure is
for the DM simply to continue modifying his
expectations as represented by the reference
levels until no further gains are perceived. Qur
experience has been that variations of this
approach are particularly well suited for use
in the Decision Support System framework
(cf. [26, 46)).

5. THE OUTRANKING CONCEPT

Implicit in both the value function and goal/
reference point approaches, are two assump-
lions, viz. (i) that there is always scope for some

form of ‘compensation’ between attributes (i.e.
that no matter how important one attribute is,
a sufficiently large gain in a lesser attribute will
eventually compensate for a small loss in the
more important, cf. [10] for discussion); and (ii)
that there exists a ‘true’ ordering of the alterna-
tives (and by implication a ‘best’ alternative)
representative of the DM’s preferences, which
needs to be ‘discovered’. It is difficult to envisage
a situation in practice of no compensation, and
assumption (i) seems relatively mild therefore.
No serious decision analyst would, on the other
hand, view assumption (ii) as being a precise
and accurate representation of the real world.
Preferences are not constant in time, are not
unambiguous, and are not independent of the
process of analysis. Nevertheless, both the value
function and goal programming approaches
place a structure on the process of learning and
discovery which ensures that the solution found
does satisfy some internal consistency proper-
ties, which many find appealing as at least a
desired feature of ‘rational’ decision making.
The use of value functions or of goal program-
ming techniques does not of course preclude the
possibility of re-examination of the analysis
after the solution is obtained, in order to evalu-
ate whether the values and preferences ex-
pressed earlier are still valid in the light of what
has been learnt subsequently. If not, another
round of analysis can be conducted, until con-
vergence is reached in the sense that the solution
is optimal relative to the final ‘true’ preference
orderings revealed. (Care is needed to ensure
that the re-evaluations are not just an attempt
to juggle inputs to obtain a post hoc justification
for a decision already reached, however!). Thus
although assumption (ii) is unlikely to be a
true representation of reality, it does provide a
normative guiding principle, in searching for an
acceptable solution.

The ‘outranking’ class of approach to
MCDM, which is particularly popular in
Europe, arises out of an attempt to avoid as-
sumptions (i) and (ii) as far as possible. One
definition of outranking may be that alternative
z° outranks 7’ (z°S2°) if there is a “sufficiently
strong argument’’ [33] in favour of the assertion
that z° is at least as good as 2, from the decision
maker’s point of view. This is a relatively fuzzily
defined notion, and we can well have situations
in which neither of a pair of alternatives out-
ranks the other (‘incomparable’), and those in
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which each outranks the other (argument in
favour of ‘indifference’). A popular manner of
rendering this concept operational for practical
MCDM (for other methods, see Chapter II of
[2]) is through the ELECTRE approaches (e.g.
[33]). ELECTRE is based on the so-called con-
cordance and discordance indices, which rep-
resent respectively the ‘arguments’ for and
against the outranking relationship. For any
specific pair of alternatives z° and z°, the concor-
dance index is typically defined by something
like:

Caby= Y w

{3 2)

i.e. the relative weight of attributes on which z*
is preferred, where generally the weights are
normalized to sum to one. These weights are not
seen in trade-off terms, and are rather relative
voting weights accorded to the respective cri-
teria. This intrinsic, or non-compensatory, in-
terpretation of weights is seen by the proponents
of outranking methods to be one of its main
advantages. On the other hand, it is not at all
clear whether decision makers can or would
perceive weights in any terms other than at least
the relative importance of the trade-offs offered
by the available ranges of values on each at-
tribute. (Certainly this writer, on introspection,
finds it difficult to evaluate weights in any other
terms.) Where weights do represent some form
of trade-off desirability, the legitimacy of their
use as voting weights is not immediately evident,
and in any case their use in this way represents
a discarding of important preference infor-
mation.

The discordance index for criterion i is posi-
tive only if z2 > z%, and represents the extent to
which the difference z% — z¢ is sufficient of its
own to contradict (‘veto’) the assertion that z*
outranks z°, and is commonly defined as fol-
lows:

d'(a, b) = max{z—'b———;"——ﬁ , 0}

where p; is a threshold of importance for differ-
ences, and s, is a scaling factor for the attribute
values z,.

The earlier versions of ELECTRE declared z*
as outranking z° if C(a, b) = c¢* and d'(g, b) <
d* for some suitable threshold values ¢* and d*.
The outranking relationships can be displayed
either in matrix form or as a graph with nodes

representing alternatives and directed arcs rep.
resenting outrankings. In addition, a partia]
ordering of the alternatives can be derived from
the outranking relationships. Some quite com-
plex algorithms have been suggested for thig
purpose, but a simple and effective approach is
simply to score each alternative by the number
of alternatives which it outranks less the number
which outrank it. For greatest ease of interpret-
ation of these results, it is desirable that the
number of outranking relationships be neither
too large nor too small. This is critically depen-
dent upon choice of ¢* and d*: if c* is too large
and/or d* too small, then there will be ngo
outrankings, while in the contrary case a situ-
ation may be reached where virtually every
alternative outranks every other. In practice,
it is necessary to experiment with a variety of
threshold levels until a suitable density of out-
ranking relationships is obtained. A systematic
manner of achieving this is suggested by
Vetschera [49].

This writer’s experience is that ELECTRE
used in this way is particularly valuable as a
descriptive device when the number of alterna-
tives remaining under consideration is small
(e.g. 6 or less). The outranking graphs help DMs
to focus attention on critical issues and to gain
insight into their own preference structures. It
can also assist in understanding how and why
other MCDM methods generate the answers
they do. For larger numbers of alternatives,
however, much of this insight is lost through the
overwhelming'level of detail, while the partial
rankings may do little more than to group
alternatives into 2 or 3 equivalence classes, on
a basis which contains some rather ad hoc
elements (e.g. the precise algorithm used for
establishing the ranking).

Later versions of ELECTRE (version III)
attempt to give some measure of the degree of
outranking, by using the concordance index
moderated by a function of the discordances.
This assists in deriving a ranking of alternatives,
but introduces further ad hoc functional forms,
which although intuitively appealing are
difficult to verify empirically as models of
human preferences.

6. FUZZY SET THEORY

The problem of multi-criteria decisiqn
making is fundamentally one of imprecision If
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human preferences: we cannot say precisely
whether one alternative is preferred to another
because one is better on some criteria, and the
second on other criteria. Zadeh’s fuzzy set
theory (see [57] for a review in the operations
research context) has thus been suggested as a
means of resolving MCDM problems; in fact
the first such suggestion goes back more than
20 years to Bellman and Zadeh [3].

In fuzzy set terms, each alternative would
have some degree of membership y;(z;) in the
fuzzy set of good (or acceptable, or satisfactory)
solutions for each criterion taken in turn. The
alternative’s membership in the fuzzy inter-
section of all these single-criterion fuzzy sets
then indicates the strength of its claim to being
good (or acceptable, or satisfactory) overall. In
fact, we might well then rank order alternatives
according to the degree of their membership in
the fuzzy intersection. There are, however, two
practical problems associated with this ap-
proach.

The first problem relates to the assessment of
the membership functions y;(z;). In principle
this should represent the extent to which an
attribute value of z; satisfies achievement of
criterion i. Operational procedures for assessing
this are poorly defined in the literature, if at all;
and where defined, it is difficult to see that the
DM would understand what is required in terms
of anything other than those of value functions.
Reported applications of fuzzy sets to MCDM
problems tend to propose rather ad hoc
measures for p;(z;), such as a linear function
increasing from 0 to 1 over some range of values
(possibly just the range from ideal to nadir
values), e.g. [47, 56]. The algorithmic effect of
such functions is no different to that of value
functions or of achievement or scalarizing func-
tions in goal programming, without the advan-
tage afforded by the discipline, especially of
value function theory, of specific behavioural
assumptions regarding DM preferences which
can be checked.

Secondly, the definition of the fuzzy inter-
section itself is not without argument. The
original Zadeh definition requires that the fuzzy
intersection of the degrees of achievement on
two criteria i and k be given by the fuzzy set
with membership function Min{y,(z;), p(z:)}-
Zimmermann and Zysno [58] have shown that
human preferences are considerably more com-
plex than this representation indicates, and in

any case, on prima facie grounds the Min func-
tion seems an unlikely candidate for MCDM at
least, as it allows for no compensation between
criteria. Alternative representations of the fuzzy
intersection have been suggested, such as the
product y,(z;) - s (z,), but these too are ad hoc,
and not clearly grounded in specific and testable
behavioural assumptions.

Our view, therefore, is that at this stage,
attempts to apply fuzzy set theory to MCDM in
any operational manner leads to models which
are effectively either goal programming or value
function models, but with the inputs required
from the DM obscured behind a language which
may seem more ‘natural’, but which gives
greater scope for misunderstanding between
analyst and DM than the simpler clear-cut
language of goal levels, aspiration levels, trade-
offs or relative values. It is of little concern to
practical goal programming or value function
analysis that the DM may be imprecise in
specifying the necessary inputs: these are easily
handled by relevant sensitivity analyses.

7. DESCRIPTIVE METHODS

All of the MCDM methods discussed thus far
are at least partially normative in the sense that
the aim is to provide some form of guidance or
recommendation regarding a full or partial rank
ordering of decision alternatives. In this sense,
MCDM can be seen as having evolved from
optimization theory. We have previously
suggested [42] that an alternative view is that of
MCDM as a problem of multivariate statistical
analysis. We can view the set of decision alterna-
tives, represented by the set of attribute vectors
z°for all a € 4, asan n x p matrix Z, where each
row is the attribute vector for one alternative,
and n is the number of alternatives in A. The
analysis is then directed towards an examination
of the relationships between the attributes
(‘variables’ in statistical terminology), so as to
develop an understanding of what can realisti-
cally be achieved, and what are the constraints
on performance imposed by the current decision
set A. This understanding can assist the DM in
formulating his goals realistically, and in con-
structing a desired solution to the decision prob-
lem.

A more-or-less direct application of this
multivariate statistical approach is demon-
strated in [42]. Factor analysis is used to identify
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linear combinations of the attributes which tend
to vary together across the set of decision
alternatives. Each such linear combination is
used as an axis in a co-ordinate system, on
which the alternatives can be plotted. In this
way, a large proportion of the differences which
exist between alternatives can be represented in
a low dimensionality plot (where often as few as
two dimensions suffice). By projecting the ideal
on to the same plot, the points representing the
alternatives can be seen as diverging from the
ideal in a number of different directions, each
direction representing a particular set of trade-
offs which are actually offered by the alterna-
tives in 4. The specific plots produced by the
factor analysis in [42] were at that time seen to
be of limited value, in retrospect possibly due to
the separation of positive and negative factor
loadings into separate ‘cost’ and ‘benefit’ axes,
and to the fact that the direct implications for
each individual criterion were not directly dis-
played. The alternative suggested in [42] was to
use correspondence analysis, in which a similar
set of plots were obtained, but on which prefer-
ence axes from best to worst were shown for
each criterion, all on the same two dimensional
plot of the alternatives.

Brans and Mareschal [11] and Mareschal
and Brans [27], in an extension of their
‘PROMETHEE’ method (an outranking ap-
proach) termed ‘GAIA’, used principal com-
ponents analysis in much the same way as above
(recalling that factor analysis is in effect merely
a rotation of the ‘principal component’ axes),
but plotting both the alternatives, and the con-
tributions of each attribute to each component,
on the same set of axes. This yields a plot
allowing similar interpretation to that of the
‘correspondence analysis’ plots proposed by
Stewart [42]. It should be noted that Brans and
Mareschal do not apply principal components
to the Z matrix directly. They first establish by
interaction with the DM an ‘intensity of prefer-
ence’ measure between each pair of alternatives
according to each criterion in turn. The pairwise
intensities of preference between any one
alternative and all others are consolidated into
a single ‘nett flow’ representing the value of this
alternative relative to the others, in terms of
each criterion. The principal components analy-
sis is applied to the matrix of these ‘nett flows’,
rather than to the original z; values. Simple
experimentation reveals, however, that the plots

Stewart—Multiple Criteria Decision Making

produced by analysis of Z directly (without the
need for the DM to specify intensities of prefer-
ences for various differences in attribute values)
are nearly indistinguishable from those pro-
duced by Brans and Mareschal, cf. the example
below. ,
Perhaps the multivariate statistical approach
is better understood by means of a simple
example. A useful example is that used by Brans
and Mareschal [11], in which choice is to be
made between alternative sites (different Euro-
pean countries) for an electric power plant. Six
criteria have been identified as follows:

z,: manpower required (minimize);

z,: power generated in MW (maximize);

z;: construction costs in 10® US dollars
(minimize);

z,: annual maintenance costs in 10° US
dollars (minimize);

zs: number of villages to be evacuated
(minimize);

z¢: safety level on a nominal scale (maxi-
mize).

Table | summarizes the relevant data. The first
two principal components explain close to 80%
of the variation between the six alternatives.
These two components are respectively:

—0.152, — 0.79z, + 0.94z, — 0.58z, + 0.82z, — 0.80z,
and
—0.93z, +0.52z, +0.25z; + 0.33z, — 0.15z5 — 0.43z,

where the signs of the z; have been reversed in
the case of the minimizing criteria (so that,
according to our convention, increasing values
are always preferred), and where the z; have
been standardized to a mean of 0 and a standard
deviation of 1. By computing these component
scores for each alternative, and plotting these in
the plane defined by these components, we have
effectively a projection of each alternative on to
the plane of maximum variation between
alternatives. This is done in Fig. 1, on which is
also shown the projection of the ‘ideal’ and the
directions of deviation from the mean corre-
sponding to good performance on each cri-
terion. (Note that Fig. 1 corresponds very
closely to the figure on p. 241 of Brans and
Mareschal [11], apart from a mirror image
reflection and some rotation of the axes.) Certain
observations can immediately be made from
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‘ Table 1 -

2, 2, 2y 2z, 24 24
faly 80 90 600 54 8 5
Belgium 65 58 200 97 1 1
Germany 83 60 400 72 4 7
United Kingdom 40 80 1000 75 7 10
Portugal 52 72 600 20 3 8
France 94 96 700 36 S 6

Fig. 1. Firstly, good performances on criteria z,
and z; tend to occur together and at the expense
of the other criteria, except perhaps for z, which
is somewhat orthogonal to the remaining cri-
teria (cf. the horizontal axis in Fig. 1 and/or the
positive coefficients for z; and z; in the above
expressions). Similarly, z, and z, tend to per-
form together. Then we notice that the alterna-
tives differ from the mean, and from the
projection of the ideal in three main directions,
with two alternatives lying in each direction;
these represent the trade-off directions which
are available. Finally we see that Portugal lies
much closer to the projection of the ideal than
does any other alternative, suggesting that it is
a strong candidate unless there is one criterion
that is really substantially more important
than all others. One word of warning, however,
is that the two-dimensional plot is only an
approximate representation, and in particular
a third axis or component may reveal features
not evident with only two axes. Nevertheless,
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the descriptive approach can be a very valuable
tool for understanding a complex MCDM prob-
lem.

Rivett [29-31] also suggested a form of
graphical display based on multivariate statisti-
cal ideas. He did not, however, base this analysis
on the Z matrix, or any variant thereof. In fact,
he specifically allowed for consideration of cases
in which the attribute values were not readily
available explicitly. He rather set up an n x n
matrix of dissimilarities between alternatives,
based on holistic judgements by the DM as to
which alternatives were most similar. The tech-
nique of multidimensional scaling is applied to
this matrix in order to produce a two-dimen-
sional map on which the distances between
alternatives are maximally consistent with the
dissimilarities. Rivett demonstrates that the ma-
jor axis of this plot correlates well with prefer-
ence orders obtained by more complex analyses,
but without requiring the more difficult judge-
mental tasks of assessing strengths of preference
in value function fitting for example. The Rivett
approach does require the DM to carry out
quite a large number of comparisons between
alternatives, and although Clarke and Rivett
[13] demonstrate that it is not necessary for the
DM to compare all pairs of alternatives in this
way, this can become a constraining factor as
the number of alternatives increases.
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Fig. 1. Principal component plot for six alternatives and six criteria.
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8. THE PROBLEM OF UNCERTAINTY

In this paper we have assumed that the conse-
quences of a decision can be assessed determin-
istically, even if somewhat imprecisely. A much
more difficult problem arises when the conse-
quences themselves are stochastic. Keeney and
Raiffa [21] do give considerable attention to this
problem, and derive conditions under which a
multi-attribute utility function can be found
such that the DM’s preferences between alterna-
tives can be modelled in terms of maximization
of expected utility. This approach is equivalent
to combining to value function approach of
Section 3 with von Neumann—-Morgenstern ex-
pected utility theory. Certainly there are no good
reasons to expect that expectation of a value
function derived per Section 3 will be a particu-
larly useful criterion for MCDM under uncer-
tainty. Little additional results have been
reported since the Keeney and Raiffa book,
and in fact a lot of literature has appeared
concerning weaknesses in the von Neumann-
Morgenstern theory itself, as a predictive model
of human behaviour, even in the case of a single
criterion (cf. [S1] for a review and discussion).

Where uncertainties can be represented in
terms of a small number of exogenous scenarios,
independent of actions being taken, the perform-
ance in terms of each deterministic criterion for
each scenario can be viewed as a ‘super-criterion’
in its own right, but quite clearly the number
of super-criteria can explode so quickly that
anything more than (say) around three possible
scenarios would be practically impossible
to handle. The problem of uncertainty in
MCDM must therefore remain a major open
problem.

9. SOME PERSONAL CONCLUSIONS

Where now do we stand regarding solution
aids for MCDM problems? For the deterministic
case at least, we have a plethora of approaches,
some (but not all) of which we have reviewed
above. Some of these are ad hoc, and largely
unjustified on theoretical and/or empirical
grounds. In selecting an appropriate method to
use, the following desiderata can be identified:

(i) The inputs required from the DM
should be operationally meaningful
and free from ambiguities of meaning.

(i) The translation of these inputs intq
partial or complete recommendationg
should be consistent with the inpytg
used and with reasonable behavioura|
assumptions, and should be as far as
possible transparent to the DM.

(iii) The method should be simple ang
efficient to use.

It may be evident that the present author’s
view is that there are a relatively small number
of generally quite simple approaches which
satisfy these desiderata. Within this view, we
could conclude as follows:

(a) Goal programming in as fully an inter-
active mode as possible, perhaps rely-
ing on the reference point ideas of
Wierzbicki [53), is a valuable means of
understanding the structure of the
problem at an early stage of analysis,
when the number of potential decision
alternatives is large or even infinite.
This can be used to narrow the search
for the ‘best’ solution quite consider-
ably.

(b) Descriptive methods (Section 7) and/or
outranking methods (Section 5) are
useful once the number of alternatives
under consideration has been reduced
to a relatively small number (certainly
less- than about 15-20). These ap-
proaches assist in understanding and
visualizing the key hard judgemental
choices which have to be made, and
can generate tentative partial orderings
of the alternatives. Sometimes this on
its own is sufficient to give the DM
confidence in making a final choice
directly.

(c) If the number of alternatives cannot
be reduced far enough to allow use
of descriptive or outranking methods,
and/or if these methods do not gener-
ate a final result, and/or (very impor-
tantly) if the rationale for the final
choice has to be defended in the public
arena, then the value function ap-
proaches need to be used. In this cas¢
however, as we have stressed in Section
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3, it is vital that the methodology used
is such that the implicit assumptions
made are both justifiable and easily
understood by the DM and the public
concerned.

For the future, the field of MCDM needs

urgently to give attention to three issues at least,
viz.

10.
11.

12.

(1) The empirical validation and testing of
the various approaches which are avail-
able (which all too often are justified by
anecdotal ‘success stories’ which may
reflect more the personality of the ana-
lysts than anything about the method-
ology!").

(2) The extension of MCDM decision aids

into the group decision making situ-

ation, especially where there are con-
siderable value-conflicts between group
members.

(3) The treatment of uncertainty in

MCDM, as discussed in Section 8.
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