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Models:
Operational Definitions

• Model
– Abstraction/simplification of a real-world– Abstraction/simplification of a real-world 

system

• Hypothesis
General: A story about how the world works– General: A story about how the world works

– ARM: A story about how the managed system 
responds to management actionsresponds to management actions



Mathematical ModelsMathematical Models

• Primary purpose:
– General: to project the consequences of 

hypotheses about how systems work 
(science)
ARM t j t th f– ARM: to project the consequences of 
hypotheses about

• how populations respond to management actions• how populations respond to management actions 
• what utilities result from the management actions



Uncertainty, Models & Learning



Sources of UncertaintySources of Uncertainty
• Ecological (Structural) Uncertainty g ( ) y

– Nature of system response to management 
actions is not completely known (i.e., competing 
hypotheses)hypotheses)

• Environmental variation
• Partial controllabilityPartial controllability 

– management decision applied to system indirectly
• Partial observability y

– the state of nature is rarely seen perfectly



Ecological (Structural) UncertaintyEcological (Structural) Uncertainty 

Often there is ncertaint abo t the• Often, there is uncertainty about the 
consequences of management actions

• Consider use of multiple models representing 
competing hypotheses about system responsecompeting hypotheses about system response 
to management actions

• Optimal decisions depend on these models and 
our relative degrees of faith in themour relative degrees of faith in them 



Adaptive Management, Ecological 
U i & L iUncertainty & Learning

• Learning: 
Developing faith in the predictive abilities of– Developing faith in the predictive abilities of 
one (or more) model(s)
Discrimination among competing models– Discrimination among competing models 
occurs by comparing model-based predictions 
against estimated system state at each time g y
step

– Leads to better managementg
– Hallmark of adaptive management



Is Model Discrimination Always 
I ?Important? 

 Do different models, M1 and M2, lead to 
different management actions?different management actions?
– “You take M1, I’ll take M2,

There ain’t no difference ‘tween the two,”e e a t o d e e ce t ee t e t o,
(paraphrasing Dylan, 1962; adapted from Rev. Gary Davis)

 If not, little management value in 
discriminating between these 2 competingdiscriminating between these 2 competing 
hypotheses?



Functional UncertaintyFunctional Uncertainty
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Do the Differences Matter?Do the Differences Matter?
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Different Ecological Thresholds
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Incorporate Multiple Models in the 
OptimizationOptimization

T=1500
T=800

Equal Model Weights



Is Model Discrimination Always 
I ?Important?

• Expected value of perfect information 
(EVPI) quantifies the importance of model ( ) q p
discrimination

• Basic idea: how much better is it to know 
which model is “best” than to basewhich model is best  than to base 
decisions on average (across models) 
model performancemodel performance



Is Model Discrimination Always 
I ?Important?

• Expected value of perfect information (EVPI)Expected value of perfect information (EVPI) 
compares:
– weighted average of model-specific maximum 

values, across models 
– maximum of an average of values (based on 

average model performance; value under bestaverage model performance; value under best 
nonadaptive decision)

 













i

ttiiAi
ttiAi xAVtpxAVtpEVPI

tt

)|()(max)|(max)(
 ii



Effect of Hunting on Survival:
Diff β Diff M d lDifferent β = Different Models

Effect of h nting on ann al s r i al• Effect of hunting on annual survival

)1( KS 
St = Pr (alive in fall, yr t+1 | alive in fall, year t)
θ P ( li i f ll t 1 | li t

)1( tt KS  

θ = Pr (alive in fall, yr t+1 | alive at 
end of hunt season, year t)

Kt = Pr (die from hunting in year t |Kt  Pr (die from hunting in year t | 
alive in fall of year t)

β = coefficient defining effect of hunting; 2 models: 
(β = 0.1, 0.9) 



Expected Value of Perfect 
I f iInformation

Harvest Yield (x106)Harvest Yield (x10 )
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Ways to Express Structural 
U iUncertainty

• Functional Uncertainty
Discrete alternative models (previous– Discrete alternative models (previous 
discussion)

• Parametric uncertainty
Si l f ti l f ith diff t t– Single functional form with different parameter 
values  



Ways to Express Structural 
U i E lUncertainty: Example

• Effect of hunting on annual survival
)1( KS 

S = Pr (alive in fall yr t+1 | alive in fall year t)

)1( tt KS  

St = Pr (alive in fall, yr t+1 | alive in fall, year t)
θ = Pr (alive in fall, yr t+1 | alive at 

end of hunt season, year t), y )
Kt = Pr (die from hunting in year t | 

alive in fall of year t)
β = coefficient defining effect of hunting



Ways to Express Ecological 
U i E lUncertainty: Example

)1(S  )1( tt KS  
 Functional uncertainty (3 discrete models):

 β=0.9; mostly additive mortality hypothesis
 β=0 5; partial compensation hypothesis β=0.5; partial compensation hypothesis
 β=0.1; mostly compensatory mortality hypothesis

 Parametric uncertainty (single model):
 Task is to estimate β, thus specifying the model
 Uncertainty is expressed by )ˆ(ˆ ESUncertainty is expressed by )(ES
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How to Build a Model 



Keys to Successful Model Use: 
G lGeneral

(1) Clearly state the objective of the 
modeling effort (how is the model to be g (
used in the conduct of science and/or 
management?)

(2) Develop the model by extracting those ( ) p y g
features of the modeled system that are 
critically relevant to the objective (tailor 

d l t it i t d d )model to its intended use)



Objective of Modeling Effort: 
Ad i MAdaptive Management

• Model roles are well-defined in adaptive 
management processg p

– Project system response to management j y p g
actions based on competing hypotheses

– Purposes: 
• Make optimal decisions

L (di i i t ti d l ) f• Learn (discriminate among competing models) for 
better future management



How to Build Model:
Ad i MAdaptive Management

• Tailor model to intended use

• Adaptive management: focus on 
hypotheses about how managementhypotheses about how management 
actions translate into system responses

Typically actions influence vital rates– Typically, actions influence vital rates
– Vital rates then influence state variable(s) and 

goal-related variable(s)goal-related variable(s)



General Dichotomies Illustrate 
Id Ab M d l D lIdeas About Model Development 

• Simple vs. complex?

• Phenomenological vs. mechanistic?

• More vs. less integrated parameters?More vs. less integrated parameters? 



Simple vs ComplexSimple vs. Complex

• Abstraction/simplification is needed for 
understanding, but results in loss of information

• View model development process as a “filter”
– Restrict loss to variables/processes that are least relevant to 

objectivesobjectives 
– Retain variables/processes most relevant to objectives 

• Match model complexity with intended model use



Simple vs ComplexSimple vs. Complex

“The best person equipped to do this (the 
science of geographical ecology) is thescience of geographical ecology) is the 
naturalist…But not all naturalists want to 
do science; many take refuge in nature’sdo science; many take refuge in nature s 
complexity as a justification to oppose any 
search for patterns ” (MacArthur 1971:1)search for patterns.  (MacArthur 1971:1)



Simple vs ComplexSimple vs. Complex
• Example: red knot population dynamics as p p p y

function of horseshoe crab abundance at 
Delaware Bay 

• First step in model development is to consider 
the potentially important influencesthe potentially important influences 

• Then return to filter analogy and focus on the• Then, return to filter analogy and focus on the 
effects that are essential to modeling the 
relevant management actions 
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Mechanistic vs. 
Phenomenological

• Mechanistic models often provide better 
predictions when state or environmentalpredictions when state or environmental 
variables assume values outside 
observed historical rangesobserved historical ranges

• Dichotomy closely related to idea of 
extracting essential features of modeled 
system



Example: More PhenomenologicalExample: More Phenomenological

• Effect of hunting on annual survival
)1( KS 

S = Pr (alive in fall yr t+1 | alive in fall year t)

)1( tt KS  

St = Pr (alive in fall, yr t+1 | alive in fall, year t)
θ = Pr (alive in fall, yr t+1 | alive at 

end of hunt season, year t), y )
Kt = Pr (die from hunting in year t | 

alive in fall of year t)
β = coefficient defining effect of hunting



Example: More MechanisticExample: More Mechanistic

)1( KS 
)1( tt KbNae 

)1( ttt KS  )1(1 tt KbNat e 


St = Pr (alive in fall, yr t+1 | alive in fall, year t)
θ = Pr (alive in fall, yr t+1 | alive at end of hunt 

season, year t)
Kt = Pr (die from hunting in year t | alive in fall of 

year t)year t)
Nt = abundance in fall of year t
b = parameter related to density-dependence of spring-b  parameter related to density dependence of spring

summer mortality



More vs. Less Integrated g
Parameters

• More integrated
Annual population growth rate– Annual population growth rate

• Less integrated
Annual survival and reproductive rates– Annual survival and reproductive rates

• Still less integrated
S l i l t d ti t– Seasonal survival rates, reproductive rate 
components

• Levins’ (1966 1968) notion of sufficient• Levins  (1966, 1968) notion of sufficient 
parameters



How to Build Model:
Ad i MAdaptive Management

• Focus on state (and other) variables that appear 
in objective function

• Identify key links between management actions 
and these variablesand these variables 

• Typically, these links involve vital rates that yp y
appear in equations for state variable dynamics 

• Uncertainty (competing models) will frequently• Uncertainty (competing models) will frequently 
involve different stories about these linkages



How to Build Model:
Ad i MAdaptive Management

• Environmental (not management)Environmental (not management) 
variables that affect vital rates can be 
handled in either of 2 ways:handled in either of 2 ways:
(1) Incorporation in model in order to improve 

predictive abilitypredictive ability 
• Recommended if covariate is easily obtained and 

very important to prediction
(2) Do not explicitly incorporate, but view as 

component of environmental variation  



Modeling ExamplesModeling Examples

Dynamic Models for State 
Variables



Dynamic Models for State 
V i blVariables

• State variables are used to characterizeState variables are used to characterize 
ecological systems and their well-being

• Most dynamic models for state variables are 
Markovian: state at t+1 depends on state at tp

• Most dynamic models for state variables also ost dy a c ode s o state a ab es a so
include vital rates, rate parameters responsible 
for changes in state variables



Dynamic Models for State 
V i blVariables

• Ecological state variables (lots ofEcological state variables (lots of 
possibilities)

Population size (single species)– Population size (single species)
– Number (or proportion) of patches occupied 

by a speciesby a species
– Species richness

Number (or proportion) of patches in a– Number (or proportion) of patches in a 
particular habitat category



Change in Animal Abundance:
BIDE Model

Nt+1 = Nt + Bt + It - Dt - Et

Nt = abundance at time t
Bt = new recruits (births) entering pop between t

and t+1 and present at tand t+1 and present at t
It = immigrants entering pop between t and t+1 

and present at tand present at t
Dt = deaths between t and t+1 
Et = emigrants between t and t+1 t g



Change in Animal Abundance:
Express in Terms of Vital Rates

Nt+1 = Nt (St + Ft) Nt+1/Nt = λt = St + Ft

Nt = abundance at time t
λ t f l ti hλt= rate of population change
St= survival rate, P[survive to t+1| alive at t]
Ft= fecundity rate, new animals at t+1 per 

animal at t



Focus on Vital Rates: 
Survival, Fecundity, Movement

• Population ecologyPopulation ecology
– All changes in abundance come about 

through the action of these rate parameters
• Population conservation/management

– Management actions that influence g
abundance must do so via 1 or more of these 
parameters

E l ti l• Evolutionary ecology
– Determinants of fitness: survival and fecundity

Fit d fi d t i– Fitness defined as genotypic 



Occupancy DynamicsOccupancy Dynamics

• State variable: proportion of patches thatState variable: proportion of patches that 
is occupied by species of interest 
– Endangered speciesg p
– Invasive species
– Disease organismsg

• Dynamics: focus on changes in occupancy 
as function of vital rates 
– Probability of local extinction
– Probability of local colonization 



Occupancy DynamicsOccupancy Dynamics
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Occupancy DynamicsOccupancy Dynamics
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Occupancy Dynamics: NotationOccupancy Dynamics: Notation

 = probability unit occupied in season 11 = probability unit occupied in season 1

b bilit it b i dt = probability a unit becomes unoccupied 
between seasons t and t +1

 = probability a unit becomes occupiedt = probability a unit becomes occupied 
between seasons t and t +1



Occupancy DynamicsOccupancy Dynamics
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Occupancy Dynamics:
F d l E iFundamental Equation 

Dynamics:

1 (1 ) (1 )t t t t t       

Equilibrium:


*





Community DynamicsCommunity Dynamics

ttttt NKNN  )()1(1 

• Nt = local species richness at time t
• K = total species in regional pool• K = total species in regional pool
• εt = Pr (species not locally present at t+1 | locally 

present at t)present at t)
• γt = Pr (species locally present at t+1 | not locally 

present at t)present at t)



Habitat DynamicsHabitat Dynamics

• State variable:State variable: 

– = proportion of patches or sample units in
][r

t   proportion of patches or sample units in 
habitat state, h, at time t

t

][rs
– = Pr (patch in habitat s at time t +1 | patch in 

habitat r at time t)

][rs
t

• Habitat dynamics, e.g.
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Habitat DynamicsHabitat Dynamics
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Modeling ExamplesModeling Examples

Functional Relationship Models 
for Vital Rates



The Logit LinkThe Logit Link

  0 1 1 2 2logit ln ...
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The Logit LinkThe Logit Link

• Interpreting the effect of a covariate on theInterpreting the effect of a covariate on the 
probability θ can be difficult due to the 
non-linear relationshipnon linear relationship.
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Measuring Confidence in 
Models

How to Learn



Models and LearningModels and Learning

• Basic criterion by which a managementBasic criterion by which a management 
model is judged is its ability to predict 
system response to management actionssystem response to management actions

D l d l “ i ht ” fl ti l ti• Develop model “weights” reflecting relative 
degrees of faith in the models of the model 

tset



For a Given Model SetFor a Given Model Set

• Weights assigned to each model add toWeights assigned to each model add to 
1.0 (thus relative credibility)

• Models with higher weight have greater 
credibility and will have more influencecredibility and will have more influence 
over future management decisions

• If a robust predictive model is in the set its 
weight should go to 1.0 over time.weight should go to 1.0 over time.



Initial Weight ValuesInitial Weight Values

• Option 1 – set subjectivelyOption 1 set subjectively 
– Politically

Based on expert opinion– Based on expert opinion

O ti 2 hi t i l d t• Option 2 – use historical data 
– AIC weights (Burnham and Anderson 1998)
– Pick previous date, start with equal weights, 

and update to present time



Weights Updated as Function of:Weights Updated as Function of:

• The current weight (prior probability)The current weight (prior probability)

• New information (i e the difference• New information (i.e., the difference 
between model predictions and what 
actually occurs, based on monitoringactually occurs, based on monitoring 
results)

• The new weight is called a posterior 
probabilityprobability



Updating Model Probabilities:
Bayes’ Theorem

pt+1(model i | datat+1) =

pt(model i ) P(datat+1 | model i)pt(model i ) P(datat+1 | model i)

 pt(model j ) P(datat+1 | model i)
j

pt( j ) ( t+1 | )
j



AHM LearningAHM Learning
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Process Furthers Learning WhenProcess Furthers Learning When

• A good approximating model is in theA good approximating model is in the 
model set (i.e., a model that predicts well 
across the state space)p )

• Predictions from each model fairlyPredictions from each model fairly 
represent the idea that generated them

• An adequate monitoring program is in 
place for model comparison/discriminationplace for model comparison/discrimination



Model Predictions Should:Model Predictions Should:

• Be unbiased under the ecological hypothesisBe unbiased under the ecological hypothesis 
they represent
• Bias could change direction of weight changes and g g g

lead to throwing out hypothesis erroneously

• Include all relevant uncertainties
• Model-based stochastic variation
• Parametric uncertainty – sampling variation due to 

estimation


