Case Study: Native Prairie Adaptive Management in the USFWS Refuge System

Introduction

Case Study Module A

Module Developed by:
Jill Gannon
USGS Northern Prairie Wildlife Research Center

Purpose of Case Study
- Demonstrate the components of an adaptive management framework through a real application
- Individual elements introduced throughout Case Study Modules A - E, in sync with the regular course modules that introduce each topic
- Illustrate how the components all integrate into a cohesive decision framework

Case Study – Outline
- Module A
 - Problem
 - Objective
 - Alternative Decisions or Actions
- Module B
 - Models
- Module C
 - Monitoring and Learning
- Module D
 - Dynamic Decision Making
- Module E
 - Seeing the Whole Picture

Outline for this Module
- Introduction to the Problem
- Native Prairie Adaptive Management
 - Framework Components
 - Decision makers and stakeholders
 - Organization and Roles
 - Area and scale of focus
 - Management Objective
 - Alternative Actions
 - Decision cycle – frequency and timing

October 2015
Case Study Module A – 1
USGS & USFWS-NCTC
Native Prairie in North America
- Widespread loss to agricultural conversion
 - Mixed-grass prairie reduced by >70%
 - Tallgrass prairie reduced by >85%
- In remainder, exclusion of historic disturbances
 - Grazing by native ungulates
 - Frequent fires

Native Prairie in the USFWS Refuge System - Prairie Pothole Region
- USFWS Refuge System is an important conservation reservoir of remaining native prairie
- Invasion by cool-season introduced grasses
 - Smooth Brome (*Bromus inermis*)
 - Kentucky bluegrass (*Poa pratensis*)

Native Prairie in the USFWS Refuge System
- “Brome Summit” 2006
- Dakota-wide inventory 2006 – 2008
 - 5 – 55% native grasses and forbs (NP)
 - 10 – 45% smooth brome (SB)
 - 10 – 45% Kentucky bluegrass (KB)
- 1984, 2007 site comparison
 - 39-63% reduced NP cover, replacement by SB and KB
- Conclusion
 - Invasion problem is bad and getting worse
 - USFWS Refuge System is accountable
 - NWRS mission statement
 - NWRS Improvement Act of 1997
 - Need to act now

Native Prairie in the USFWS Refuge System
- Management against invasive species
 - Re-introduction of disturbance to mimic natural processes that historically shaped native vegetation communities
Native Prairie in the USFWS Refuge System (cont)
- Success has been poor to inconsistent
 - Uncertainties about biological response to management
 - Absence of systematic evaluation of management effects
 - Inadequate monitoring, record-keeping
 - No coordination of effort

A Coordinated, Adaptive Approach
- Joint effort by USGS and USFWS
- Develop adaptive decision support system (NPAM)
 - Coordinates local efforts
 - Assists in selecting management actions under uncertainty
 - Maximizes learning from management outcomes
 - Reduces uncertainty through time
 - Improves future decision making
- Operates at level of individual land unit and whole region
- Began in 2008…continues to present

NPAM Framework Components
Decision Makers and Stakeholders

- USFWS National Wildlife Refuge System (NWRS)
 - Multiple decision makers under a single authority

- Decision makers
 - Individual managers of each refuge
 - Autonomy in interpreting goals and implementing management

- Stakeholders
 - Refuge managers, biologists, and project leaders
 - NWRS, regional offices and administrators, funding sources, outside researchers
 - Burn crew, grazing contractors, neighbors, users, public

USFWS Refuge System Cooperators

- Prairie Pothole Region
- Mixed-grass and tallgrass
- USFWS Refuge System, Regions 3 and 6

- 120 management units
 - 81 mixed-grass, 39 tallgrass

- 19 refuge stations

es: MN, ND, SD, MT
 NPAM Organization and Coordination

- Framework Development Team
 - USGS researchers
 - Refuge biologists – core representatives of greater cooperator group

Coordination and Communication

- Annual face-to-face workshops and meetings
- Web-Ex, conference calls, emails
- Central repository (e.g., SharePoint)

Refuge Cooperator Contributions

- Elements of the decision framework
 - Desired outcomes
 - Feasible management actions
 - Expected response of system to management
 - Uncertainties
 - Monitoring capacity
- Land base
 - Spatial replicates for management actions
- Process sustenance
 - Vision, leadership, and energy
USGS Research Partner Contributions

- Expertise in:
 - Constructing adaptive decision framework
 - Elicitation of pertinent information
 - Decision structuring
 - Developing models that inform decision making
 - Designing monitoring that informs management
 - Linking management outcomes to learning
- Hold and facilitate meetings
- Document process

NPAM “Kick-Off”

- 2008 Cooperator Kick-Off Meeting
 - Consensus on the problem
 - Adaptive management, elements of a decision framework, organization of NPAM
 - Determined the following elements for NPAM
 - Scope – area of focus
 - Spatial scale
 - Management objective
 - Decision alternatives
 - Temporal scale
 - Uncertainties that make decision-making difficult
 - Monitoring needs and capacity

NPAM – Bounding the Problem

- The Resource Problem
 - Loss of native prairie to cool-season invasive grasses, smooth brome and Kentucky bluegrass
- Area of focus
 - Native sod on Refuge lands across the Prairie Pothole Region in USFWS Regions 3 and 6, where SB and KB are the main invasive species of concern.
- Spatial unit of focus
 - Management unit
NPAM – Management Objective

- Management Objective
 - Must be measurable
 - Must be capable of being predicted
 - Drives development of all other framework components

 Increase the cover of native grasses and forbs while minimizing cost

NPAM – Decision Alternatives

- Decision Alternatives
 - Small set of distinct actions
 - Ability to predict response

- Menu of management action alternatives
 - Rest
 - Graze
 - Burn
 - Burn / Graze

NPAM – Decision Cycle

- Management cycle
 - Decisions made on an annual basis

- Management year: 1 September – 31 August
 - Based on timing of management relative to monitoring and expected time-frame of response to management
 - Management actions – fall and spring
 - Monitoring – June to August, after management implemented
 - Measuring system response to action requires management year to include the fall and spring that precedes monitoring

NPAM – Decision Cycle

- Concept of linked decisions
 - Current decision influences future system state and therefore future decisions
 - Current decision may affect
 - Options for future decisions
 - Feasibility of future decisions

- More on this on topic in Case Study Module D – Dynamic Decision Making
NPAM – Management Problem

- Problem recast as a Decision Statement
 - Which is the best management action to implement each year to decrease cool-season invasive grass species and increase the cover of native grasses and forbs on each management unit, while minimizing cost?

Literature Cited
