Dynamic Decision-making

Adaptive Management: Structured Decision Making for Recurrent Decisions

Dynamic Decision-making
Chapter 8
Developed by: Clinton T. Moore

Session Objective: By the end of this session, participants will be able to:

- Recognize the implications of making decisions in a dynamic context
- Understand the nature of solutions to dynamic problems
- Articulate important considerations for developing objectives for dynamic decisions
- Understand the two important ways that structural uncertainty is handled in dynamic solutions

Outline

- Context
- Decisions through time
- Dynamic programming
- Structural uncertainty
 - Passive and active adaptive management
- Summary points

Context

- Here, we focus on dynamic decision processes

We also focus on making decisions under uncertainty
Why are these contexts important?

- Decisions made today have impacts on future states, future decisions, and future returns
 - Opportunities created, opportunities lost

- Uncertainty reduces management performance over the long term

- However, recurrent decisions present an opportunity to reduce uncertainty

Dynamic decision making

How do we make a good decision?

The "decision tree"

- Discrete set of possible actions
- Each action leads to an outcome
 - Outcomes are probabilistic events
 - Reflects uncertainties due to the environment and partial control
- Each consequence (action × outcome combination) has a value (utility)
Dynamic Decision-making

Adaptive Management: Structured Decision Making for Recurrent Decisions

Generalizations needed

- For dynamic decision making, we will generalize the decision tree in 2 ways:
 - **Time**
 - Decisions are linked through time
 - Today’s decisions have consequences for future decision making
 - **Structural uncertainty**
 - Probabilities of outcomes are themselves uncertain
 - Use decision making to resolve structural uncertainty over time

Generalization 1: Time

- Adaptive management only works in a context of sequential decision making
 - **In time:**
 - Releases of animals to establish a population
 - Harvest regulations to maximize cumulative harvest
 - **In space:**
 - Thinning of forest blocks to obtain desired understory conditions
 - Hydrologic re-engineering to restore wetland communities

Dynamic decision making – some terms

- **State variables**
 - Measurable attributes of the resource that inform “where we are”
 - May be more than one, e.g. population size and habitat condition
 - *Partial observability* – hampers management performance and ability to learn

- **Return (or reward)**
Dynamic Decision-making
Adaptive Management: Structured Decision Making for Recurrent Decisions

- Value provided for a specific action taken or for arriving in a specific state
- Model
 - Mathematical description of system dynamics that links states, actions, and returns

The system moves from state to state

Implications of sequential decisions
- Decisions should account not only for the immediate return, but for all future returns according to where the system is driven and all decisions that follow
 - Myopic decision making focuses only on the immediate future
 - Future opportunities closed off or lost
 - Unsustainable management
Dynamic optimization
• Goal is to find an optimal trajectory of decisions through time that provides greatest expected accumulated return
 o Exact approaches
 o Approximate approaches

Important to note…
• Optimization and optimal management are not technical requirements for adaptive management
 o Learning under AM can proceed by any strategy to select a decision
 o But, optimization is the only recourse for selecting actions that are most efficient for pursuing the resource objective
 • i.e., may be a trade-off between efficiency (conservation delivery) and practicality/feasibility

Exact approaches
• Continuous-time approaches
 o For systems suitably represented in continuous time domain by simple models and few controls
 • Calculus of variations
 • Maximum principle
 • Continuous-time dynamic programming

• Discrete-time approaches
 o More complex systems, or those not well represented in continuous-time domain
 • Dynamic linear programming
 • Discrete-time dynamic programming (DP)

Dynamic programming (DP)
• Finds a trajectory of actions through discrete steps of time that maximizes an objective defined over the time horizon
 o Terminal value – a return that is realized only at the end of the time horizon (i.e., a salvage or liquidation value)
 o Accumulated value – returns that occur at each decision period and are summed
The time frame

- Time interval corresponds to the interval of the recurring decision
 - Often annual, but can be shorter or longer as appropriate

- Time horizon
 - Fixed & short-term
 - Indefinite, or very long

Fixed, short-term time horizon

- Appropriate where a desired end state is to be achieved within a specified time limit
 - Terminal value formulation

- Examples:
 - “Determine the optimal 10-year sequence of actions to achieve a targeted plant community composition”
 - “Determine the optimal 20-year sequence of releases to establish a breeding population with high probability of persistence”
Indefinite, or very long time horizon

- Appropriate where a recurrent reward is sought and long-term resource sustainability is at least an implied objective
 - Accumulated value formulation
- Examples:
 - “Determine optimal sequence of regulatory actions to maximize expected cumulative harvest of waterfowl over an indefinite time horizon”
 - “Determine optimal sequence of water releases to sustain targeted diversity of an aquatic community over 100 years”

Influence of the time horizon

- A thought exercise
 - You are a manager at a forest refuge where a threatened bird occurs, and you make annual forest harvest decisions intended to sustain the population through the creation of mid-successional forest habitat
 - However, you are informed that next year, the refuge will be sold, the forest cut, and the resident population translocated
 - To best support the population until that happens, what would likely be your approach to forest management this year?
 - Scenario change: Suppose instead that you know the refuge will be liquidated 30 years from now – how would that knowledge affect your decision this year?
Discounting

- Returns in the future have less value relative to the same return today
 - May be appropriate for problems involving monetary return or where future returns are uncertain
 - High discounting is incompatible with notions of sustainability
 - But low discounting may be useful in finding optimal solutions without severely undervaluing the future

![Diagram of dynamic decision-making](image)

What are we trying to do?

Find these... that makes this as large as possible

Terminal value formulation

OR

Find these... that makes this sum of (discounted) values as large as possible

Accumulated value formulation
Need to account for system dynamics
- Note that the terminal reward or the time-specific rewards are dependent on the states that the system passes through
 - Must account for these transitions
- Bellman’s Principle of Optimality (1957)
 - A solution based on a recursive argument
 - Bellman suggested a way forward … by working backwards!

Walk-through of a simple DP problem
- Managing a single patch of native prairie:
 - A single state variable with 3 levels:
 - Patch is (1) mostly native composition, (2) mixed native-invasive, or (3) mostly invaded
 - 4-year decision interval
 - 2 decision alternatives at each interval:
 - Defoliate every other year for 4 years, or rest
 - Rewards
 - Certain action-outcome combinations are more favorable than others

- A simple model

- Returns and cumulative values
Recursive feature of objective function

- For each system state, find decision that maximizes

\[V_{t0} = y_{t+1} + y_{t+2} + y_{t+3} + \ldots + y_T \]

- To solve for optimal decisions, construct the policy one decision at a time by working \textit{backwards} from the future to the present.
Simple model: Steps in optimization
1. Assign values for having arrived at each possible state at end of time frame T
 - Levels of satisfaction for each state
2. Move backwards 1 period – for each decision (D or R) at time $T-1$, determine return (y) and probability of transition (p) to each state at T
3. Calculate average value of each decision: Add current return y to value associated with each state at T, then sum (weighted by p) over state outcomes
4. For each state at $T-1$, identify action yielding greatest expected accumulated return
5. Store the optimal action and its state-dependent value
 - Compute optimal values for other states
6. Return to step 2; repeat process through time frame
More iterations of this process may reveal a stationary policy, i.e., decisions sensitive only to state, not time.

DP: Summary of steps
1. Assign values for arrival at end-of-time states
2. Move back 1 time step; determine returns from each action × outcome combination
3. Calculate average value of each decision at time step
4. Identify optimal action at each state at time step
5. Store optimal actions and state-dependent value
6. Repeat (2)-(5) through time frame

DP: key points
- DP is merely a chain of decision trees
- Once a state’s optimal value is computed at any time step, the potential paths forward in time from that state are irrelevant
- Sufficient iterations may yield a stationary optimal policy, where decisions are dependent on system state but not on time
- DP provides closed-loop control
 - Today’s optimal action reflects feedback inherited from the system dynamics
Example: Invasive species control
 - Objective: Minimize discounted sum of damage, monitoring, & treatment costs
 - State: Manager's relative confidence in low, medium, or high levels of infestation (invasion state is not fully observable except through monitoring)
 - Actions: Do nothing (1), monitor only (2), treat only (3), treat + monitor (4)

Other examples
- Harvest
 - Anderson (1975) Ecology 56:1281-1297
- Reintroduction / translocation
- Habitat management / Invasive species control
- Human disturbance
Approximate approaches

- DP suffers from “Curse of Dimensionality”
 - Problem size explodes with increasing number of states, decisions, and random variables
 - Computational limits are quickly met

- Some approximate alternatives may be “good enough”
 - Simulation-optimization
 - Reinforcement learning
 - Heuristic techniques

- Again: bona fide optimization is not a technical requirement for adaptive management

Generalization 2: Structural Uncertainty

- We are often uncertain about basic dynamics of the system
 - What is the probability of transitioning to a desired community state given that burning is conducted?
 - What is the average spawning response given control of a predator?
 - What is the form of the relationship between season length and harvest rate?

- Recurrent decision making provides an opportunity to learn and adapt our management approach

Decision tree, revisited

- We earlier considered a decision problem in which carrying out the management action favored the desired outcome, compared to no action
 - \(P(\text{native} \mid \text{hydrology restoration}) = 0.7 \)
 - \(P(\text{native} \mid \text{no action}) = 0.5 \)

- But suppose that this is uncertain or in dispute; that is, a credible claim is made that restoring hydrology has no better chance than doing nothing?
Dynamic Decision-making
Adaptive Management: Structured Decision Making for Recurrent Decisions

Here, uncertainty matters

The optimal action depends on the model (hypothesis) we choose
- If we believe in H1, ‘Restore’ action is optimal (expected utility = 59)
- If we believe in H2, ‘Do nothing’ action is optimal (expected utility = 50)

Competing models
- Do we even have to choose one model over another?
 - No – Our strategy will be to compute expectations of the utilities with respect to relative confidence in the models, and choose the action with greatest expected utility
 - Let’s assume 50:50 relative confidence in the models
 - Aside: other strategies are available for one-time, non-dynamic decisions
 - e.g., minimax, info-gap theory
Incorporating model uncertainty

<table>
<thead>
<tr>
<th>Expected Utility</th>
<th>Model</th>
<th>Outcome</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hypothesis 1</td>
<td>Hypothesis 2</td>
<td>Native Community Established</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>52</td>
<td>H1: 59</td>
<td>H2: 45</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>50</td>
<td>H1: 50</td>
<td>H2: 50</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model Belief Weight

52

Structural uncertainty in DP
- Approach #1 (passive)
 - Augment the decision tree with model belief weights, chain the trees together as before, and keep belief weights unchanged over the time steps
 - Model uncertainty is acknowledged in the optimization, but not in a way that recognizes that it can change over time
 - In application, it does change over time as decisions are made, outcomes are compared to predictions, and model weights are updated
- Strategy for approach #1:
 - Perform DP using today’s model weights throughout all time steps, pretending as though weights will never change
 - Make a decision, carry out action, and update model weights
 - Repeat (1) and (2) at next decision opportunity
- Learning is *passively* obtained as an *unplanned* byproduct of decision making
Passive adaptive management
Structural uncertainty in DP

- Approach #2 (active)
 - Alternatively, explicitly account for expected change in model weights as decisions are made
 - We track changing system knowledge (in the form of model weights) as an *information state*, alongside the physical system state
 - We use a formulation of DP that incorporates Bayes' Theorem as the model of dynamics for the information state
 - The optimization anticipates that knowledge about the system will change in response to decisions made through time and the responses they are expected to generate
 - Learning is *actively* obtained as a *planned* outcome of decision making
 - Dual control: learning is pursued to the extent that it improves long-term management

Active adaptive management

![Diagram showing dynamic decision-making](image_url)
Passive vs Active

- Both approaches provide closed-loop control of the system state, but CL control of the information state is only achieved through active AM.

- The *dual control* problem: Balancing the pursuit of management objectives against the need for information that tells us how the system works.
 - Active AM provides a balanced solution that proposes informative (but not reckless) actions when system uncertainty is high.
 - Learning (information) is pursued only to the extent that it improves management.
 - Passive AM also pursues the management objective, but under the simplifying assumption that understanding will never change.

Example: Forest harvesting for old-growth habitat

<table>
<thead>
<tr>
<th>Forest State</th>
<th>Model Weights</th>
<th>Optimal Harvest Amounts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F1 (Fast)</td>
<td>F0 (Med)</td>
</tr>
<tr>
<td>Mostly young forest</td>
<td>1 0 0</td>
<td>0 1 0</td>
</tr>
<tr>
<td>Mostly old forest</td>
<td>1/3 1/3 1/3</td>
<td>0.04 0 0</td>
</tr>
<tr>
<td></td>
<td>1 0 0</td>
<td>0 1 0</td>
</tr>
<tr>
<td></td>
<td>1/3 1/3 1/3</td>
<td>0.08 0 0</td>
</tr>
</tbody>
</table>

Moore & Conroy (2006)
Examples

- Passive AM
 - Optimal predator control: Martin et al. (2010) Biological Conservation 143:1751-1758

- Active AM
 - Disease management: McDonald-Madden et al. (2010) Ecological Applications 20:1476-1489

Experimentation and AM

- Neither passive nor active AM defers pursuit of the management objective for the sake of learning
 - They both focus on the management objective, but they use different tactics to account for uncertainty
- In contrast, experimentation places all emphasis on learning
 - Pursuit of management returns is set aside in favor of pursuing information
- Considerations for integrating experimentation into AM
 - Maintain focus on fundamental objectives (learning is a means objective)
 - Exploit opportunities for targeted experimentation (i.e., a sample of spatial units)
 - Inferences based on model selection and parameter estimation are more useful than classical hypothesis tests
Summary points

- Decisions made in dynamic systems have consequences for future decision making
 - Today’s decision influences future states and future rewards
 - Optimal decision making should account for future system dynamics, and if possible, uncertainties about those dynamics

- Dynamic programming seeks optimal state-dependent decision policies
 - Short-term or indefinite time horizon
 - Terminal value or accumulated value
 - Uses recursion in a reverse-time perspective to account for future system dynamics
 - Solution is achieved by working through a chain of decision trees

- Structural uncertainty may matter to the decision
 - We can still make an optimal decision by computing expected decision values with respect to model confidence weights
 - Can approach this in two ways in DP:
 - Passive AM – uncertainty is recognized, but assumed to remain static through time
 → Better management occurs as an unplanned byproduct of decision making
 - Active AM – uncertainty is modeled as a dynamic state through time
 → Decision making itself can be used to elicit information that would enable better management to evolve
... and the gratuitous sports reference