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Context

= Here, we focus on dynamic decision
processes

System System System ______ System
state (t) State (t+1) State (t+2) state (T)

&




Context

* We also focus on making decisions
under uncertainty

Environmental
Variation

Structural Uncertainty

R Resource at
time 2

Resource at
time 1

v

Partial
Estimated Controllability Estimated
resource state ‘ resource state

Partial Observability




Why are these contexts important?

»= Decisions made today have impacts
on future states, future decisions,
and future returns

e Opportunities created, opportunities lost

= Uncertainty reduces management
performance over the long term

= However, recurrent decisions
present an opportunity to reduce
uncertainty




Dynamic decision making

How do we make a good
decision?

&< USGS



The “decision tree”

= Discrete set of possible actions

= Fach action leads to an outcome

e Outcomes are probabillistic events

e Reflects uncertainties due to the
environment and partial control

= Each conseguence (action x
outcome combination) has a value

(utility)

&< USGS




Decision tree

Expected Utility Model
Expected utility

Outcome Utility

Is greatest for 0.7
‘Yes’ decision Q/ '

T

Community

— Native
L Established

Native

Community Not

Established

o Native

Community
Established

Native

Community Not

0.5

Probabilities that arise froh

the random environment

Established

7

Quantities that reflect the
value of each consequence 3



Generalizations needed

* For dynamic decision making, we will
generalize the decision tree in 2 ways:
 Time
- Decisions are linked through time

- Today’s decisions have consequences for future
decision making

« Structural uncertainty

- Probabilities of outcomes are themselves
uncertain

- Use decision making to resolve structural
uncertainty over time

&< USGS




Generalization 1:
Time
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Generalization 1: Time

= Adaptive management only works in a
context of sequential decision making
e Intime:

- Releases of animals to establish a population

- Harvest regulations to maximize cumulative
harvest

e |n space:

- Thinning of forest blocks to obtain desired
understory conditions

- Hydrologic re-engineering to restore wetland
communities

&< USGS
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Dynamic decision making — some terms

= State variables

e Measureable attributes of the resource
that informs “where we are”

- May be more than one, e.g. population size
and habitat condition

- Partial observability — hampers management
performance and ability to learn

&< USGS
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Dynamic decision making — some terms

= Return (or reward)

» Value provided for a specific action
taken or for arriving in a specific state

= Model

 Mathematical description of system
dynamics that links states, actions, and
returns

&< USGS
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The system moves from state to state
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Implications of sequential decisions

= Decisions should account not only
for the Immediate return, but for all
future returns according to where
the system is driven and all
decisions that follow

* Myopic decision making focuses only
on the immediate future

- Future opportunities closed off or lost
- Unsustainable management

&< USGS
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Dynamic optimization

= Goal Is to find an optimal trajectory
of decisions through time that
provides greatest expected
accumulated return

e EXxact approac
o Approximate a

NES

Dproaches
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Important to note...

= Optimization and optimal management
are not technical requirements for
adaptive management

e Learning under AM can proceed by any
strategy to select a decision

e But, optimization is the only recourse for
selecting actions that are most efficient for
pursuing the resource objective

- l.e., may be a trade-off between efficiency
(conservation delivery) and practicality/feasibility

2 USGS 17




Exact approaches

= Continuous-time approaches

* For systems suitably represented In
continuous time domain by simple models
and few controls

- Calculus of variations
- Maximum principle
- Continuous-time dynamic programming

» Discrete-time approaches
* More complex systems, or those not well
represented in continuous-time domain
- Dynamic linear programming
- Discrete-time dynamic programming (DP)

&< USGS 18




Dynamic programming (DP)

* Finds a trajectory of actions through
discrete steps of time that maximizes
an objective defined over the time
horizon

 Terminal value — a return that is realized
only at the end of the time horizon (i.e., a
salvage or liguidation value)

 Accumulated value — returns that occur at
each decision period and are summed

&< USGS
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The time frame

= Time Interval corresponds to the
interval of the recurring decision

e Often annual, but can be shorter or
longer as appropriate

= Time horizon
* Fixed & short-term
 Indefinite, or very long

20



Fixed, short-term time horizon

= Appropriate where a desired end
state IS to be achieved within a
specified time limit
 Terminal value formulation

State (1) State (2) State (3) State (4) State (5) State (6)

v
Return (6)

2 USGS 21




Fixed, short-term time horizon

= Examples:

o “Determine the optimal 10-year sequence of actions
to achieve a targeted plant community composition”

o “Determine the optimal 20-year sequence of
releases to establish a breeding population with
high probability of persistence”

State (1) State (2) State (3) State (4) State (5) State (6)

v
Return (6)
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Indefinite, or very long time horizon

= Appropriate where a recurrent
reward Is sought and long-term
resource sustainabillity Is at least an
iImplied objective
« Accumulated value formulation

@@@Many@

v \ 4 \ 4
Return (1) Return (2) Return (3)

&< USGS
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time
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State (T-1) }—b‘ State (T) I

v v
Return (T-1) Return (T)
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Indefinite, or very long time horizon

= Examples:

« “Determine optimal sequence of regulatory actions
to maximize expected cumulative harvest of
waterfowl over an indefinite time horizon”

« “Determine optimal sequence of water releases to
sustain targeted diversity of an aquatic community
over 100 years”

time

v v Ste p S v
(St ——{ Sae@ f—e{ S Joemmoboene- (e 2 —{ e )

v \ 4 \ 4 A\ 4 v
Return (1) Return (2) Return (3) Return (T-1) Return (T)
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Influence of the time horizon

= A thought exercise

 You are a manager at a forest refuge where a
threatened bird occurs, and you make annual forest
harvest decisions intended to sustain the population
through the creation of mid-successional forest habitat

 However, you are informed that next year, the refuge will
be sold, the forest cut, and the resident population
translocated

* To best support the population until that happens, what
would likely be your approach to forest management this
year?

e Scenario change: Suppose instead that you know the

refuge will be liguidated 30 years from now — how would
that knowledge affect your decision this year?

&< USGS 25




Discounting

= Returns in the future have less value relative to the
same return today

* May be appropriate for problems involving monetary
return or where future returns are uncertain

« High discounting is incompatible with notions of
sustainability

e But low discounting may be useful in finding optimal
solutions without severely undervaluing the future

time

v v v Ste p S v
(St ——{ Sae@ f—e{ S Joemmoboene- (e 2 —{ e )

v /
Return (1) Return (2)

0

Return (3) )

Oz
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What are we trying to do?

Find =P ( Action* (1) Action* (2) Action* (3) Action* (4) Terminal
these... value

! formulation

[ State (1) ]—b[ State (2) ]—b[ State (3) ]—»M]—»@e (5) I

\ 4

...that makes
@4- this as large as
ossible
OR P
Flnd — Action* (1) Action* (2) " Action* (T-1) ACCUmUIated
these... value

, , ! formulation

[ Stat‘; 1) ]_’[ Sta;e 2) ]‘ ---------- -P‘ Statewe(i]

...that makes

- this sum of
Return (1) )=4( Return(2) )4 <4 ( Return (T-1) )4-( Return (T) (discounted)
values as large

as possible

27




Need to account for system dynamics

* Note that the terminal reward or the
time-specific rewards are dependent on
the states that the system passes
through

e Must account for these transitions

= Bellman’s Principle of Optimality (1957)
* A solution based on a recursive argument

e Bellman suggested a way forward ... by
working backwards!

&< USGS
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Walk-through of a simple DP problem

= Managing a single patch of native
prairie:
* A single state variable with 3 levels:

- Patch is (1) mostly native composition, (2) mixed
native-invasive, or (3) mostly invaded

» 4-year decision interval
e 2 decision alternatives at each interval:
- Defoliate every other year for 4 years, or rest

e Rewards
- Certain action-outcome combinations are more
favorable than others

&< USGS 29




A simple model

Start from Stochastic transition
any of 3 to a new state
prairie states following decision

State 1
Mostly Native

Defoliate T

State 2
Native / Invaded

State 3
Mostly Invaded

Defoliation
t decision is to t+1
be made

&< USGS
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Returns and cumulative values
[ Accrued values for J
being in each state

O e

State 1
Mostly Native

State 2
Native / Invaded

State 3
Mostly Invaded

Return for each transition

(relative satisfaction / 10=happiest)
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Recursive feature of objective function

* For each system state, find decision that maximizes

\ﬂyHl]-'_ [yt+2 T Yzt .o F YT]

Vg v

Current-year Cumulative return by all future actions
return +

(year t) (year f+1 and beyond)
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Recursive feature of objective function

* For each system state, find decision that maximizes

Vio = ++[yt+3+--- +yr)

| |\ - - r=-==---= \( _______ —

: v X !

|

Current-year ! Current-year Cumulative return |
return + | return + by all future actions I
(year t) I (year t+1) (year t+2 and beyond) ,

| |

e e e e e e e e e e e e e - =
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Recursive feature of objective function

* For each system state, find decision that maximizes

VtO = T + Yi+3 + [ + yT]

L~ \ pnluplion :X-A_-_ el
| ' : I

C | ' Cumulative |
urrent-year Current-year 1 | Current-year T ]
return + | return + : return -+ e : I
(year t) | (year t+1) , (year t+2) and beyond)|1 |

| I I
|

To solve for optimal decisions, construct the policy one

decision at a time by working backwards from the
future to the present

ZUSGS 34
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Simple model: Steps In optimization

1. Assign values for having arrived at each possible state
at end of time frame T

* Levels of satisfaction for each state

State 1
Mostly Native

4 N
State 2

Native / Invaded
\_ J

4 )
State 3

Mostly Invaded
L J

AORONO
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Simple model: Steps In optimization

2. Move backwards 1 period — for each decision (D or R)
at time T-1, determine return (y) and probability of
transition (p) to each state at T

State 1
Mostly Native D: y(6), p(0.3)

R:y(10), p(0.1)

4 N\
State 2 D: y(3), p(0.5)
Native / Invaded R:y(7), p(0.5)
\_ J
r w D: y(0), p(0.2)
State 3 R:y(4), p(0.4)
Mostly Invaded
. J

JoRoNo

T-1
&< USGS




Simple model: Steps In optimization

3. Calculate average value of each decision: Add current
return y to value associated with each state at T, then
sum (weighted by p) over state outcomes

State 1 _
Mostly Native  D: y(6), p(0.3) [
Ry
8.8 21

( )
State 2
Native / Invaded
\ J
- N :y(0), p02) P
State 3 :y(4), p(0.4)
Mostly Invaded
L J
T-1 T
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Simple model: Steps In optimization

4. For each state at T-1, identify action yielding greatest
expected accumulated return

State 1
Mostly Native D: y(6), p(0.3)

R: y(10), p(0.1)

4 N
State 2
Native / Invaded

\ J /

r N\ D: y(0), p(0.2)

State 3 R:y(4), p(0.4)
Mostly Invaded
L

J

D: y(3), p(0.5)
R: y(7), p(0.5)

JoRoNo
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Simple model: Steps In optimization

5. Store the optimal action and its state-dependent value
« Compute optimal values for other states

State 1
Mostly Native D: y(6), p(0.3)

R: y(10), p(0.1)

4 N\
State 2 D: y(3), p(0.5)
Native / Invaded R:y(7), p(0.5)
\_ J
r w D: y(0), p(0.2)
State 3 R:y(4), p(0.4)
Mostly Invaded @
. J

JoRoNo
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Simple model: Steps In optimization

6. Return to step 2; repeat process through time frame

* More iterations of this process may reveal a stationary policy,
l.e., decisions sensitive only to state, not time

State 1
Mostly Native D: y(6), p(0.3) o

R: y(10), p(0.1)

( N\
State 2 D:y(3), p(0.5) |,
Native / Invaded R:y(7), p(0.5)
\ J 9.6
e \ D: y(0), p(0.2)
State 3 R:y(4), p(0.4)
Mostly Invaded
\_ J
T-2 T-1
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DP: Summary of steps

1.

> W

&< USGS

Assign values for arrival at end-of-time
states

Move back 1 time step; determine returns
from each action x outcome combination

Calculate average value of each decision at
time step

ldentify optimal action at each state at time
step

Store optimal actions and state-dependent
value

Repeat (2)-(5) through time frame

41



DP: key points

= DP Is merely a chain of decision trees

= Once a state’s optimal value is computed
at any time step, the potential paths
forward in time from that state are
irrelevant

= Sufficient iterations may yield a stationary
optimal policy, where decisions are |
dependent on system state but not on time

= DP provides closed-loop control

 Today’s optimal action reflects feedback
Inherited from the system dynamics

%USGS
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Example: Invasive species control

» Haight & Polasky (2010) Resource and Energy Economics
32:519-533
= QObjective: Minimize
discounted sum of damage, °s

monitoring, & treatment
costs

= State: Manager’s relative
confidence in low, medium,
or high levels of infestation
(invasion state Is not fully )
observable except through ’ o i molribhitton] ‘
monitoring)

= Actions: Do nothing (1),
monitor only (2), treat only
(3), treat + monitor (4)

1

0.6

NMNN = - -

1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
2
2 2
2 2

MR = o 2o
PPN = = =
(YO [CI (O CI NN

NRNNNN = =

MNMRNRNNRN =

INENERY AN

0.4

Prob
[no infestation]

0.2
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Other examples

= Harvest
e Anderson (1975) Ecology 56:1281-1297

o Johnson et al. (1997) Journal of Wildlife Management 61:202-
216

= Reintroduction / translocation

 Lubow (1996) Ecological Applications 6:1268-1280

« Tenhumberg et al. (2004) Conservation Biology 18:1304-1314
= Habitat management / Invasive species control

* Richards et al. (1999) Ecological Applications 9:880-892

« Johnson et al. (2011) Journal of Fish and Wildlife Management
2:234-246

« Tyre etal. (2011) Journal of Fish and Wildlife Management
2:262-281

* Pichancourt et al. (2012) Journal of Applied Ecology 49:52-62
* Human disturbance
 Martin et al (2011) Conservation Biology 25:316-323
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Approximate approaches

» DP suffers from “Curse of Dimensionality”

* Problem size explodes with increasing number
of states, decisions, and random variables

e Computational limits are quickly met

= Some approximate alternatives may be
“good enough”
e Simulation-optimization
* Reinforcement learning
* Heuristic techniques

= Again: bona fide optimization is not a
technical requirement for adaptive
management

&< USGS
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Generalization 2:
Structural Uncertainty



Generalization 2: Structural Uncertainty

= We are often uncertain about basic
dynamics of the system

* What is the probability of transitioning to a
desired community state given that burning is
conducted?

 What is the average spawning response given
control of a predator?

« What is the form of the relationship between
season length and harvest rate?
= Recurrent decision making provides an
opportunity to learn and adapt our
management approach

2 USGS 47




Decision tree, revisited

= \We earlier considered a decision
problem in which carrying out the
management action favored the desired
outcome, compared to no action

* P(native | hydrology restoration) = 0.7
« P(native | no action) = 0.5

» But suppose that this Is uncertain or in
dispute; that Is, a credible claim is made
that restoring hydrology has no better
chance than doing nothing?

&< USGS
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Decision tree, revisited

Expected Utility Model

Hypothesis 1

Outcome Utility

J 07

Community

— Native
L Established

Native

Community Not

Established

o Native

Community
Established

Native

Community Not

Established
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Decision tree, revisited

Expected Utility Model Outcome Utility

Hypothesis 2

Native
05 Community
" Established

[ H2: 45 } '
NEYS

Community Not
Established

Native
Community
Established

Community Not
Established
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Here, uncertainty matters

= The optimal action depends on the
model (hypothesis) we choose
 |If we believe in H1, ‘Restore’ action is
optimal (expected utility = 59)
 |If we believe in H2, ‘Do nothing’ action
IS optimal (expected utility = 50)
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Competing models

= Do we even have to choose one model
over another?

 No — Our strategy will be to compute
expectations of the utilities with respect to
relative confidence in the models, and
choose the action with greatest expected
utility
- Let’'s assume 50:50 relative confidence in the
models

* Aside: other strategies are available for one-time,
non-dynamic decisions
- e.g., minimax, info-gap theory

&< USGS
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Incorporating model uncertainty

Expected Utility Model Outcome Utility
Hypothesis 1  Hypothesis 2

?/ 0.7 o Native
Community

0.5 —  Established

Native
Community Not
Established

i Native
Community
Established

0.5

Decision

50 [ Native

Community Not
0.5 Established

H1 H2
0.5 0.5

Model Belief Weight
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Structural uncertainty in DP

= Approach #1 (passive):
« Augment the decision tree with model

&< USGS

belief weights, chain the trees together as
before, and keep belief weights
unchanged over the time steps

- Model uncertainty is acknowledged in the
optimization, but not in a way that recognizes
that it can change over time

- In application, it does change over time as
decisions are made, outcomes are compared to
predictions, and model weights are updated

o4



Structural uncertainty in DP

= Strategy for approach #1.:

1. Perform DP using today’s model weights
throughout all time steps, pretending as
though weights will never change

2. Make a decision, carry out action, and
update model weights

3. Repeat (1) and (2) at next decision
opportunity

» Learning Is passively obtained as an

unplanned byproduct of decision
making
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Passive adaptive management
i Optimization Q

Current @
period :
(t) > Xira

Next @
period

(t+1) > Xiea

Next @
period

(t+2) >

&< USGS 56




Structural uncertainty in DP

= Approach #2 (active):

* Alternatively, explicitly account for expected change
In model weights as decisions are made

- We track changing system knowledge (in the form of
model weights) as an information state, alongside the
physical system state

- We use a formulation of DP that incorporates Bayes’
Theorem as the model of dynamics for the information
State

- The optimization anticipates that knowledge about the
system will change in response to decisions made through
time and the responses they are expected to generate

e Learning is actively obtained as a planned outcome
of decision making

- Dual control: learning is pursued to the extent that it
Improves long-term management

%USGS 57




Active adaptive management

Information State

System State

ZUSGS 58



Passive vs Active

= Both approaches provide closed-loop control of the
system state, but CL control of the information state
IS only achieved through active AM

= The dual control problem: Balancing the pursuit of
management objectives against the need for
Information that tells us how the system works
« Active AM provides a balanced solution that proposes

informative (but not reckless) actions when system
uncertainty is high

- Learning (information) is pursued only to the extent that it
Improves management
« Passive AM also pursues the management objective,
but under the simplifying assumption that understanding
will never change
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Example: Forest harvesting for old-growth habitat

Forest State

T

P1

P2

Mostly young forest

UH P1
P2

P4

P3
Mostly old forest

&< USGS

Model Weights

F1 FO F2 Optimal Harvest Amounts
(Fast) (Med) (Slow) P2 P3 P4
1 0 0) 0.08 0 0
0 1 0 0.04 0 0)
0 0 1 0 0 0)
1/3 1/3 1/3 0.04 0) O Passive
1/3 1/3 1/3 0.08 0 O Active
1 0 0) 0 0 0
0 1 0) 0 0) 0)
0 0 1 0 0) 0)
1/3 1/3 1/3 0 0) 0. Passive
1/3 1/3 1/3 0.10 0.20 0.02 Active
Moore & Conroy (2006)
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Examples

= Passive AM

o Waterfowl harvest: Johnson et al. (1997) Journal of
Wildlife Management 61:202-216

o Optimal predator control: Martin et al. (2010)
Biological Conservation 143:1751-1758
= Active AM

e Forest management: Moore & Conroy (2006)
Forest Science 52:155-172

 Disease management: McDonald-Madden et al.
(2010) Ecological Applications 20:1476-1489

e Threatened plant management: Moore et al. (2011)
Journal of Fish and Wildlife Management 2:247-261

* Optimal release strategy: Runge (2013) Journal of
Wildlife Management 77:1135-1144

&< USGS
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Experimentation and AM

= Neither passive nor active AM defers
pursuit of the management objective for
the sake of learning

* They both focus on the management
objective, but they use different tactics to
account for uncertainty

* |n contrast, experimentation places all
emphasis on learning

* Pursuit of management returns Is set aside
In favor of pursuing information

&< USGS

62



Experimentation and AM

= Considerations for integrating
experimentation into AM

« Maintain focus on fundamental objectives
(learning Is a means objective)

« Exploit opportunities for targeted
experimentation (i.e., a sample of spatial units)

e Sequential active adaptive management
- Alternating cycles of experimentation and passive
adaptive management
* Inferences based on model selection and
parameter estimation are more useful than
classical hypothesis tests

&< USGS 63




Summary points

= Decisions made in dynamic systems
have conseqguences for future
decision making

e Today’s decision influences future
states and future rewards

* Optimal decision making should
account for future system dynamics,
and If possible, uncertainties about
those dynamics
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Summary points

= Dynamic programming seeks optimal

state-dependent decision policies

e Short-term or indefinite time I DON'T ALWAYS USE RECURSION
horizon S

« Terminal value or
accumulated value

e Uses recursion in a reverse-
time perspective to account
for future system dynamics

e Solution is achieved by
working through a chain of BUT WHEN 1001 DON' ALWAYS
decision trees USERECURSION,.......... ...

&< USGS




Summary points

= Structural uncertainty may matter to the
decision

* We can still make an optimal decision by
computing expected decision values with
respect to model confidence weights

e Can approach this in two ways in DP:

- Passive AM — uncertainty Is recognized, but
assumed to remain static through time

- Better management occurs as an unplanned byproduct
of decision making

- Active AM — uncertainty is modeled as a dynamic
state through time

— Decision making itself can be used to elicit information
that would enable better management to evolve

&< USGS
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... and the gratuitous sports reference

Recommended Option on 4th Down
12

. Iy
e
T

rr’

Line of Scrimmage (Distance to Endzone)

Based on Romer (2002) “It's fourth down and what does the Bellman Equation
say? A dynamic-programming analysis of football strategy” Working Paper 9024.
National Bureau of Economic Research
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