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             A
s policy makers and public administrators are 

acutely aware, mathematical models are 

    simplifi ed, generalized representations of a 

process or system, and their use in public administration 

is ubiquitous across policy domains. Perhaps nowhere, 

however, has their content, power, and effi  cacy as aids 

to decision making been more prevalent or potent 

than in the domain of environmental and natural 

resources (ENR) management. Th e move to quantify 

earth and biological sciences, the widespread availabil-

ity of powerful desktop computers, and the dawn of 

predictive mathematical modeling all arrived simulta-

neously in the fi nal quarter of the twentieth century. 

 In short order, predictive modeling of the earth’s natu-

ral processes soon found widespread application 

 ( Sarewitz, Pielke, and Byerly 2000 ). Consider but a 

few examples of processes in nature that are routinely 

modeled and from which policy makers are presumed 

to make better judgments when incorporated in their 

ENR management decision calculi: the environmental 

impacts of a proposed project, atmosphere pollutant 

dispersal, groundwater pollutant dispersal, radionu-

clide waste disposal, sea-level change, weather pat-

terns, climate changes, storm behavior, river fl ooding, 

fi sheries yields, and shoreline retreat. 

 At the dawn of the era, it was believed that quantita-

tive mathematical models would 

be a bridge to a better, more 

certain future in the relationship 

between humans and our natural 

environment. Not only did 

accurate prediction soon become 

an expectation of the public, but 

mathematical modeling came to 

epitomize in people’s minds 

sophistication and state of the 

art in much of science and pub-

lic policy. Nor were citizens 

alone in these judgments. Natural scientists and policy 

makers also assumed that quantitative mathematical 

models would provide a basis for predicting more 

absolutely the course of nature and its potential 

impacts. 

 Society’s expectations aside, however, mathematical 

modeling has sparked much controversy. Th is is 

not surprising for two reasons. First, the ecological, 

economic, and political stakes involved in the ENR 

challenges they are developed to address are profound. 

Second, uncertainties are an inherent part of the 

process — uncertainties that can then become fodder 

for controversy. Th ese include the data gaps, assump-

tions, weightings, and extrapolations on which 

mathematical models are inevitably based. Harvard 

professor Shelia  Jasanoff  (2007)  makes this case best. 

She argues that our society expects and even insists 

on certainty to a degree that it did not count on a few 

decades ago. But believing that certainty is attainable 

(as in accurately predicting the outcome of a natural 

process) is unrealistic and damaging to policy makers 

and scientists alike. Our increased reliance on science 

to prove absolute answers may be a product of the 

computer age and the widespread but often misplaced 

confi dence that quantitative mathematical models 

will provide the answer. Jasanoff  argues, and we con-

cur, that humility is required: humility on the part 

of scientists who must know the limits of scientifi c 

knowledge, and humility on the part of planners and 

policy makers who must stop turning to science and 

mathematical models for answers 

and instead come up with their 

own solutions aided by scientifi c 

observations. 

 Still, the allure of mathematical 

modeling as a policy aid for ENR 

management issues remains 

strong, and it will continue to be 

so in the future. But has the 

optimism about mathematical 

modeling of ENR processes ever 

been realistic? Are mathematical models useful under 

certain circumstances and not others? How should 

policy makers best discern their utility, and how might 
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they better use them to inform their judgments? We 

argue that realizing high expectations for mathemati-

cal modeling in the ENR policy domain has proved, 

in practice, to be a bridge too far. Moreover, because 

reliance on some models has produced negative 

consequences, policy makers need to be aware of these 

shortcomings and communicate them to the public as 

they discern how much weight to give their fi ndings 

in decision making. 

 In making these arguments, we begin by reviewing two 

types of ENR modeling: quantitative and qualitative. 

In the process, we show the paradox of quantitative 

modeling: While complex mathematical models strive 

to capture the complexity of natural systems, the more 

complexity they off er, the less accurate they can be-

come. Next, and illustrating our points largely but not 

exclusively with examples from the mathematical mod-

eling of beach erosion, we off er 10 lessons for policy 

makers to consider when interpreting and weighing the 

utility of recommendations derived from mathematical 

models. Our point is that modeling in this policy area 

is complex, but decidedly less complex than other 

applications of mathematical modeling. And though we 

focus on ENR modeling, our lessons are applicable to 

the fundamentals of modeling in a variety of policy 

areas. We conclude by arguing that mathematical mod-

eling as an approach to ENR management has to be 

fundamentally rethought.  

  The (Mis)measurement of Nature: Assessing 
the Relative Merits of Quantitative versus 
Qualitative Modeling 
 Th ere are two types of basic models for natural pro-

cesses: quantitative and qualitative. Although both 

present us with a generalized perspective on a natural 

problem, they are not equal in terms of predictive 

power. Th e fi rst type — quantitative models — can be 

used as a surrogate for nature, whereas the second —

 qualitative models — do the same but with less accuracy. 

Quantitative models are expected to provide answers of 

suffi  cient accuracy for practical societal use. Th e con-

ventional wisdom is that such models may specifi cally 

answer questions related to the number of centimeters 

the sea level will rise in the next 100 years or predict 

precisely how many tons of haddock can be harvested 

in a sustainable catch next fi shing season (surrogate for 

nature). In contrast, qualitative models eschew preci-

sion in favor of more general expectations grounded in 

experience. Th ey are useful for answering questions 

such as whether the sea level will rise or fall or whether 

the fi sh available for harvest will be large or small 

(perspective). Such models are not intended to provide 

“accurate” answers, but they do provide generalized 

values: order of magnitude or directional predictions. 

 Our contention is that quantitative mathematical 

models are problematic and that their uncritical 

 acceptance by policy makers may actually exacerbate 

society’s ENR problems. A paradox leading to conceit 

exists in quantitative mathematical modeling. As we 

have noted, computers have allowed society to develop 

ever more complex models that track and manipulate 

far more variables, far more relationships, and far more 

data than earlier, simpler versions. Yet along with more 

variables, relationships, and data come more complexity, 

less ability to understand the model, and more room for 

error. Nature, we contend, is far too complex to predict 

in a quantitative way. Using a simple example, we don’t 

believe that society can put a number on how high the 

sea level will rise in this century. We can say that models 

indicate that the sea level will continue to rise in the 

next century, that the rate is likely to accelerate, and that 

policy decisions should be made on that basis. In this 

light, the educative role for policy makers, including 

public managers, is important. Th ey should train the 

public to expect and pay attention to this type of predic-

tion, disabuse them of the quantitative precision in 

prediction in favor of trends, and garner their support 

for decisions that are made on this basis. 

 Th e problem runs even deeper, however. In some 

technical circles — for example, among the engineers 

who build seawalls on beaches and the hydrologists 

who predict groundwater movement — modeling is 

almost a religion. Belief in predictions is rock solid 

and criticism in applied modeling fi elds is dismissed 

outright, especially if the criticism comes from those 

who do not understand the mathematics behind the 

models. Model zealots seem to believe that mathemat-

ics is more important than the natural process. 

 James O’Malley, a fi shing industry representative, 

expresses a common frustration of nonmodelers who 

deal with the impenetrable circle of modelers on a 

frequent basis:  

 I stress that the problem [is] not mathematics 

per se but the place of idolatry we have given it. 

And it is idolatry. Like any priesthood, it has 

developed its own language, rituals, and mysti-

cal signs to maintain its status and to keep a 

befuddled congregation subservient, convinced 

that criticism is blasphemy. . . . Most frightening 

of all, our complacent acceptance of this approach 

shows that mathematics has become a substitute 

for science. It has become a defense against an 

appropriate humility, and a barrier to the acqui-

sition of knowledge and understanding of our 

ocean environments. . . . When used improperly 

mathematics becomes a reason to accept absur-

dity. ( Pilkey and Pilkey-Jarvis 2007 , xiii)  

 But all models should not be dismissed on these 

grounds. Rather, it is useful to think about them as 

lying on a continuum running from positive to 

 negative contributions to ENR management decision 

making. At one distressing end of the quantitative 
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modeling spectrum are coastal 

engineers who predict how long 

artifi cial or replenished beaches 

will last. It is an obviously impos-

sible task, as one must know 

when the next big storms will 

occur in order to predict a beach’s 

lifespan. Yet the hand of those 

who would model is forced be-

cause of a federal requirement to 

predict beach durability in a 

cost – benefi t ratio for each beach nourishment project. 

In order to be allocated the money to award their 

projects, the U.S. Army Corps of Engineers must 

show a favorable cost-benefi t ratio. Th e practice con-

tinues despite decades of predictive failures. And when 

these predictions fail, we are off ered the excuse that 

beaches  disappear more quickly than predicted be-

cause the big storms were characterized as unusual in 

strength and unexpected in timing. It is not, defend-

ers argue, because the models were wrong. Can any-

one argue with a straight face that storms are a surprise 

on a beach? Would we accept such excuses from engi-

neers who build failed bridges? 

 At the other, more positive end of the spectrum is the 

United Nation’s Intergovernmental Panel on Climate 

Change (IPCC), which is predicting the future of 

global climate change and sea-level rise. Th e IPCC 

recently shared with former Vice President Al Gore 

the 2007 Nobel Peace Prize for its work. Th e quantita-

tive models of the IPCC may be no better than the 

models of beach behavior. Yet these modelers agoniz-

ingly, and in great detail, list and evaluate the assump-

tions and model simplifi cations, strong and weak, 

behind the predictive models. Th ose who are skeptical 

of the IPCC’s climate models have the criticisms laid 

out for them to understand and consider. Th ere is 

 transparency  in the process. Moreover, although the 

IPCC models may be questionable in a quantitative 

sense, they have considerable value as qualitative indica-

tors. For example, the models probably cannot predict 

how much the sea level will rise in the next century, but 

they can answer the qualitative 

question of whether the sea level 

will likely continue its rise. 

 From a scientifi c perspective, 

however, perhaps the greatest 

damage from relying too heavily 

on quantitative models is the 

harm done to robust science. 

Much-needed fi eld and labora-

tory studies are not carried out 

because mathematical models are 

thought to provide a cheaper and 

easier way to understand the 

earth’s natural processes. Also, as 

noted, there is a strong tendency 

for applied modelers to circle the 

wagons when faced with criti-

cism. Vigorous debate and criti-

cal review of good science are 

often absent, victims of math-

ematical “certainty.” In contrast, 

the IPCC models stand as an 

obvious exception to the rule. 

Th e climate modelers do not 

circle their wagons any more 

than do observational scientists. 

 James Wilson, a University of Maine fi shery economist, 

also has an opinion on how model-based science can be 

damaging:  

 Th e models are not verifi able and no attempt is 

made to verify. Th e result is that we don’t learn 

except at an extremely slow rate. Almost all the 

science is done in government facilities and 

what’s not done in government facilities is done 

on government contract. Th ere is no indepen-

dent body capable of giving depth and breadth 

to an alternative view. Academic scientists in-

cluding ecologists often get involved, but fi nd 

that the National Marine Fisheries Service 

becomes an attack machine whenever there is 

any substantial disagreement. In short the insti-

tutions that keep science vibrant and progres-

sive are absent. (2002, 191 – 92)  

 Th e extent of the damage to society that overconfi -

dence in mathematically modeled predictions has 

caused ranges from the nonexistent Cold War missile 

gap to the loss of the Grand Banks cod fi shery ( Pilkey 

and Pilkey-Jarvis 2007; Taleb 2007 ). Even assuming 

that the models would answer the question of the fate 

of stored radioactive waste at Yucca Mountain, an 

impossible design approach was taken and the reposi-

tory may never be built (unless politics trumps science, 

a distinct possibility). Because the math behind the 

models is impervious to the general public and policy 

makers, and even to other scientists, models are easily 

distorted to provide inaccurate 

cost estimates or overly optimistic 

environmental impact estimates.  

  Avoiding Buyer Remorse: 
Toward Becoming an 
Intelligent Consumer of 
Modeling 
 Given this spectrum of possibilities 

and range of modeling quality, 

how are policy makers to become 

intelligent consumers of the pre-

dictions premised on mathemati-

cal models? In this section, we 

off er 10 things that policy makers 

should know or ask about when 

 In order to be allocated the 
money to award their projects, 

the U.S. Army Corps of 
Engineers must show a 

favorable cost–benefi t ratio. Th e 
practice continues despite 

decades of predictive failures. 

 From a scientifi c perspective . . . 
perhaps the greatest damage 
from relying too heavily on 

quantitative models is the harm 
done to robust science. Much-

needed fi eld and laboratory 
studies are not carried out 

because mathematical models 
are thought to provide a cheaper 

and easier way to understand 
the earth’s natural processes. 
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presented with evidence premised on quantitative math-

ematical modeling. 

   Lesson 1: Th e outcome of natural processes on 

the earth’s surface cannot be absolutely 

predicted .      Nature is far too complex to characterize 

with mathematics, nor can math be used to derive an 

exact prediction of some natural process. Consider the 

relatively simple task of predicting how much sand 

will be transported each year by surf zone waves on a 

given ocean beach. Elsewhere, we have listed 49 

 parameters that could aff ect the sand transport 

process ( Pilkey and Pilkey-Jarvis 2007, 131 – 32 ). 

Th is includes wave size, type and angle of approach, 

sand grain size, tides, beach shape, and storm charac-

teristics such as frequency, duration, and direction of 

approach.  However, in the most widely used model, 

known as the Coastal Engineering Research Center 

(CERC) equation, only eight parameters are implic-

itly and explicitly considered. But that is not all. 

Th e relative importance of any of these parameters 

changes from beach to beach and from year to year 

on a single beach. Interactions among the parameters 

occur in unpredictable and unexpected sequences 

called “ordering complexity.” Th e other 41 param-

eters not considered in the CERC model are all im-

portant sometimes and somewhere. One can never 

know the direction, intensity, duration, order of 

occurrence, and frequency with which a given param-

eter (such as the all important storms) will act over 

time. Hence, an accurate characterization in a model 

of annual longshore transport is impossible. But let 

us not forget, the same equation could be very useful 

to policy makers if it is used to qualitatively charac-

terize the transported sand volume, for example, as 

either large or small.  

  Lesson 2: Examine the excuses for predictive model 

failures with great care and skepticism .      When 

models fail to predict a natural process accurately, the 

excuses usually involve the occurrence of an extreme 

event, such as an unusual storm, an unexpected fl ood, 

or an unusually long time period between storms, 

rain, or snow. But these extreme events are, in fact, 

natural: Th ey are part of the natural process whose 

outcome is being predicted. 

 An example is the failure of dams in their modeled 

design role of fl ood control because of “unexpected” 

large fl oods that require the release of water at the 

height of the fl ood to save the dam. Th is happened 

during Hurricane Fran (1996) when the Falls Lake 

Reservoir of Raleigh, North Carolina, was lowered in 

mid-fl ood, increasing the magnitude of the down-

stream disaster. Policy makers should not accept 

such “outlier” arguments, but rather should chal-

lenge why natural processes such as these were not 

factored into models, as other approximations are 

incorporated in them.  

  Lesson 3: Did the model really work? Examine 

claims of past “successes” with the same level of care 

and skepticism that “excuses” are given .      While 

“excuses” for shortcomings in the predictions of math-

ematical models must be challenged, so, too, must 

claims of accurate predictions. Good public policy 

should achieve measurable objectives. Th ese claims, in 

turn, should be verifi ed through evaluation of the 

eff ectiveness of the policy, the decision, or the models. 

But in the case of quantitative mathematical model-

ing, it is common to claim success when, in reality, 

the model was far less than successful. Recently at 

Bogue Inlet, North Carolina, sand was mined to be 

pumped up to replenish sand that had eroded from 

adjacent beaches. Using sand transport models, sand 

movement was predicted at eight points in the inlet. 

Most importantly, the models predicted that the hole 

left by the mining would fi ll in. When the project was 

completed, virtually nothing that had been predicted 

came to pass, and the dredged hole remained. Tides 

and waves will eventually fi ll in the hole naturally. 

However, the reason this failed prediction is critical is 

that the sand used to fi ll the void will be robbed from 

nearby beaches, causing them to retreat at higher 

rates. Yet the consultant responsible for the faulty 

design of the project proclaimed to the media that the 

project had been a success and even seemed to brag 

about the usefulness of the models. Th e consultant 

rationalized that the nourished beach a mile or two 

from the inlet looked just fi ne, which was true 

enough. But the proclaimed success was a far cry from 

the modeled predictions.  

  Lesson 4: Calibration of models doesn’t work 

either .      A common approach taken by modelers 

to verify accuracy is to calibrate a model by using it 

to “predict” an event that has already happened. On 

the surface, “hind casting” makes sense, but in reality 

it doesn’t work. In hind casting beach erosion, for 

example, one would apply a mathematical model of 

shoreline retreat to some time frame — say, between 

1980 and 1990. Th e rate of shoreline retreat during 

those years is known, and the idea is to calibrate the 

model so it comes up with the known reality. Th e 

model is tweaked to accomplish this. Parameters 

and constants are adjusted until the correct answer 

is obtained. Once that is done for a defi ned time 

period, it is assumed that it will work to predict 

the future. 

 Successful model prediction of a past event, however, 

does not prove that a model can successfully predict 

the future ( Oreskes, Shrader-Frechette, and Belitz 

1994 ). Ordering complexity, described in the sand 

transport case, is the reason hind casting does not 

work. Because we cannot solve the problem of order-

ing complexity, successful prediction of the past may 

have little bearing on the success of a model in pre-

dicting the future. Said diff erently, the events that 
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drove beach erosion in one decade are not going to 

occur in the same order, at the same frequency, and 

at the same intensity in the next decade. Storms will 

come from diff erent directions and will linger off shore 

for diff erent time spans. Hence, the rates of beach 

erosion (and especially the lifespan of nourished or 

replenished beaches) will diff er from decade to decade. 

And success in predicting events between 1980 and 

1990 would have no bearing on the prediction of 

events between 1990 and 2000. 

 Carrying this problem one step further, the model 

is often applied in some fi elds to a second time span. 

If the model is again successful in predicting events, 

it is said to be verifi ed. In the case of the beach ero-

sion model, this could involve the application of the 

model to 1990 – 2000. Unfortunately, we suspect that 

successful verifi cation is an uncommon event. But 

even when it is, policy makers need to look closely at 

what is considered a successful prediction for model 

verifi cation. We have seen instances in which, buried 

deep in a report, it was clear that verifying one com-

monly used model for sand transport on beaches 

required changing the wave height for the second 

time span. Policy makers need to read the footnotes 

of any calibration report with an eye toward changes 

of these kinds. Replication means replication. Th ey 

should also keep in mind an additional reality of 

calibration models: Whenever no amount of tinker-

ing and tweaking can come up with the right answer 

in the process of calibration, the model is likely 

invalid. However, and ironically, it is only possible 

to falsify a model through calibration. One cannot 

use calibration to verify it. Be wary of any claims 

to the contrary.  

  Lesson 5: Constants in the equations may be 

coeffi  cients or fudge factors .      Most models use coef-

fi cients or constants in their equations, and policy 

makers need to consider their source. In particular, 

one needs to ask whether the 

source of these  coeffi  cients is 

grounded in natural processes or 

best guesses. Take again the 

example of the CERC equation, 

which incorporates a sediment 

transport coeffi  cient. When the 

CERC equation is examined 

closely, it is clear that sediment 

transport coeffi  cients have no 

basis in nature ( Th ieler et al. 

2000 ). In fact, the CERC coef-

fi cient, which is said to vary 

from beach to beach, is basically 

used as a fudge factor. It brings 

values of the amount of sand 

carried in the surf zone into the 

range of “known values,” thus 

legitimating the ultimate values 

generated. In the case of beach sand transport 

models, the coeffi  cient ( k ) is multiplied by the fi nal 

answer. Yet in the geologic and engineering litera-

tures,  k  values range over two orders of magnitude —

 and there is usually no basis given for its choice. 

Policy makers should thus ask about the source of 

such coeffi  cients to see whether they are simply 

pulled out of the air.  

  Lesson 6: Describing nature mathematically is 

linking a natural fl exible, dynamic system with a 

wooden, infl exible one .      All models face inherent 

uncertainties because human and natural systems are 

always more complex than can be captured in a 

model. Some of the inaccuracies, shortcuts, or simpli-

fi cations used by models ( Haff  1996 ) include averag-

ing, scaling up, omission of important variables, and 

substitution of mathematics for actual fi eld 

observations. 

 Annual sand transport by waves is the primary factor 

that determines how long an artifi cial beach will last. 

Imagine, however, the variation in wave height and 

direction in a surf zone over one year (or over one 

week). Consequently, averages are used in models. But 

averages do not exist in nature, and their use always 

reduces the modeled impact of extreme events. In the 

case of wave characterization, averaging takes out (or at 

least reduces) the importance of storms. Th e same 

problem occurs when characterizing groundwater fl ow, 

including the permeability of the rocks between point 

A and B, sand grain size, river fl oods, wind velocities, 

atmospheric temperatures, and fi sh populations. 

 Scaling up is another problem. Observations of beach 

behavior, chemical reactions, groundwater fl ow, and 

biological populations made over a period of a few 

months to a few years must be scaled up for model 

purposes into years or even centuries. Th anks to a 

federal court decision, the design of the Yucca Moun-

tain radioactive waste repository 

now requires a certainty concern-

ing the fate of the waste of as 

much as a million years. Th e 

absurdity of this required predic-

tive time span (which is fi ve 

times the span of humans on 

earth and 50 times the span of 

humans in the Americas) is a 

refl ection of our massively mis-

placed confi dence in predictive 

mathematical models. 

 Fundamentally, models are math-

ematical simplifi cations of a 

system or process. Some variables 

that make a process run may be 

omitted, while only those that 

are perceived to be important are 

 Th anks to a federal court 
decision, the design of the Yucca 

Mountain radioactive waste 
repository now requires a 

certainty concerning the fate of 
the waste of as much as a million 

years. Th e absurdity of this 
required predictive time span 

(which is fi ve times the span of 
humans on earth and 50 times 

the span of humans in the 
Americas) is a refl ection of our 

massively misplaced confi dence in 
predictive mathematical models. 
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used in the model. Often, it turns out that important 

variables are omitted. If an important variable in a 

model is poorly known, it is common practice that an 

optimistic value is chosen in the process of model 

tweaking. Th is can be attributable to a glass-half-full, 

not half-empty attitude. Or it can be an attempt to 

ensure a “satisfactory” answer. Th e story of the as-

sumed groundwater fl ow at Yucca Mountain provides 

an example of this problem. 

 Th e assumed rate of downward groundwater move-

ment at the proposed Yucca Mountain, Nevada, ra-

dioactive waste disposal site was very slow. As the 

design process evolved, the predicted rate of water 

movement used in the mathematical models inched 

ever slower. Yet when a tunnel was carved into the 

mountainside, tests proved that the assumed water 

fl ow rates were too low by several orders of 

magnitude. 

 Th is was not necessarily an act of dishonesty (al-

though it might be characterized as an act of incom-

petence). Rather, it was a matter of organizational 

momentum ( Metlay 2000 ). It was easy and uncompli-

cated to come up with a lower fl ow rate estimate 

because it made the proposed design approach all the 

more feasible. By contrast, proposing a higher rate 

encountered intense questioning and bureaucratic 

resistance.  

  Lesson 7: Models may be used as “fi g leaves” for 

politicians, refuges for scoundrels, and ways for 

consultants to fi nd the truth according to their 

clients’ needs .      As Pogo so famously put it, “We have 

seen the enemy and he is us.” Models can be misused 

as fi g leaves behind which policy makers hide to pro-

mote a policy or make an unpopular decision. Th is is 

what happened in the failure of the Grand Banks cod 

fi shery in the early 1990s. Beginning with the Portu-

guese, the banks were fi shed for 500 years. Th e failure 

of the fi shery off  Labrador and Newfoundland,  Canada, 

may well have been the end of the greatest fi shery the 

world has ever known. 

 Twenty – twenty hindsight tells us that the accuracy of 

the predictive models indicating that additional fi shing 

of these waters was manageable and ultimately sustain-

able was not widely accepted by fi shery scientists. Th eir 

concerns were rooted in the fact that fi shery models 

used to predict mathematically the allowable sustain-

able catch are hugely complex. For example, one must 

predict all the environmental, oceanographic, and 

biological factors that contribute to the success of cod 

at the larval and adult stages, and also to the abun-

dance of the prey and predators ( Kurlansky 1997 ). But 

politicians used the optimistic models as fi g leaves to 

hide behind and ignored catch reports (i.e., actual fi eld 

observations of cod populations) indicating that a 

catastrophic collapse was on its way. What politician in 

his or her right mind would want to join battle with, 

let alone shut down, an industry that employed 40,000 

people at its height? When the ecological collapse 

foretold by the observational data fi nally arrived, 

mathematical models were partly responsible for what 

a task force investigating the fi shery collapse described 

as “a famine of biblical scale — a great destruction” 

( Pilkey and Pilkey-Jarvis 2007, 6 ). Indeed, a dozen 

years later, the cod have not come back. 

 Th e models that the U.S. Army Corps of Engineers 

use fall into a category that we call “refuges for scoun-

drels.” Th is agency, long known for pork-barrel proj-

ects carried out at high cost with less than outstanding 

results, is a heavy user of quantitative models. Regret-

tably, arrogance of the sort described by Mr. O’Malley 

(see above) is not uncommon within this modeling 

community. For instance, modelers will not debate the 

validity of the mathematical models they use to pre-

dict how long nourished beaches will last, even in the 

technical literature. Nor is the actual experience with 

artifi cial beaches reexamined in any systematic fashion 

to determine the success or failure of their models. 

 Almost always, the predictions of beach lifespan are 

highly optimistic, which is almost certainly part of the 

Corps of Engineers’ eff ort to get funding from Con-

gress. Th is is not surprising, as perverse incentives are 

built into the relationship between the agency and 

Congress. Th e Corps is set up to depend entirely on 

project money for its very survival. And when pressed 

by other stakeholders to justify any particular model, 

the agency typically off ers what might be called a “no 

point in beating a dead horse” rebuttal: “We are now 

about to start using another generation of models 

which is more sophisticated and takes into account 

more variables.” Once again, however, the vicious 

circle continues. Th e more variables in and complexity 

of mathematical models, the worse (i.e., the more 

inaccurate) the predictions are likely to be and the 

more potential for mischief. 

 Th e Bureau of Land Management (BLM) also has 

misused models to support the mining industry and 

to allow new mines to open. Th is agency does not 

have in-house mathematical modeling expertise, so it 

depends on engineering consulting fi rms to predict 

the degree of lake pollution left behind when an open 

pit mine is abandoned. Too often, the consultant’s 

mathematical model predictions fi nd that the pit lake 

will be close to drinking water quality in 50 years 

( Moran 2000 ). Usually this prediction is far off  the 

mark. Because the agency is charged with promoting 

and not merely regulating the mining industry, the 

consultants simply fi nd the truth according to their 

clients’ needs. 

 We are not alone in warning policy makers to under-

stand these perverse incentives when weighing the 
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mathematical models informing BLM decisions. In 

the last decade, the BLM has come under much criti-

cism for its optimistic predictions of future mine 

pollution. But even if it insists on realistic and honest 

modeling from its consultants, there is no way to 

predict the future of a pit lake accurately. Like it or 

not, future predictions both for beach lifespan and 

mine pollution must be educated guesses at best and 

must be weighed by consumers accordingly.  

  Lesson 8: Th e only show in town may not be a good 

one .      Policy makers should also fi ght tendencies to 

accept the conclusions of mathematical models simply 

because they are available and add legitimacy to agen-

das, though they have little basis in nature. Th e Bruun 

rule ( Bruun 1954 ), for example, is the only mathemati-

cal model that predicts how much shoreline erosion 

will be caused by sea-level rise. Th e rule states that the 

rate of erosion is determined by the rate of sea-level 

rise and the slope of the beach. Not only is predicting 

erosion not that simple, but also the model has virtually 

no demonstrable basis in nature ( Cooper and Pilkey 

2004 ). Th e problem is that the model answers an im-

portant question that no other model does, so it is the 

only show in town. And because coastal managers and 

policy makers are so convinced that they need a num-

ber to inform and legitimize the decisions they make, 

the Bruun rule survives despite a storm of criticism. 

 Th e widespread use of the Bruun rule is, in part, a 

refl ection of our society’s belief that we absolutely 

must have an accurate fi gure for future erosion rates. 

How can we plan without an accurate number? But 

policy makers need to understand that there  are  

alternatives to predictions premised on the illusion 

of precision aff orded by complex models of natural 

processes. Most simply, we can extrapolate from present  -

day shoreline erosion rates. Again, precise predictions 

premised on the internal logic, assumptions, posited 

relationships among variables, and data gaps and 

surrogates will be impossible if one extrapolates from 

current data. But in the real world, we cannot predict 

the unpredictable anyway. Importantly, policy makers 

who use extrapolations of current trends to “replace” 

the predictions of mathematical models are likely to 

do better than if they rely on one type of prediction. 

At a minimum, the deliberations and debates among 

policy makers, the general public, and agency experts 

will be leavened appreciably.  

  Lesson 9: Th e mathematically challenged need not 

fear models and can learn how to talk with a 

modeler .      One of the most dysfunctional aspects of 

mathematical models from a deliberative democracy 

perspective is the disconnect with — and disempower-

ment of — laypeople in decisions that aff ect them. 

Certainly, this is a tendency that is not limited to the 

ENR management arena (see, e.g.,  Sandel 1998 ). 

Indeed, as Durant, Fiorino, and O’Leary (2004) 

 suggest, reconnecting with citizens and stakeholders 

is a major challenge facing policy makers and public 

administrators worldwide. 

 As natural scientists working in the ENR management 

arena, we contend that the modeling process must be 

open and citizens must question predictions. To allow 

this, models should be as transparent as possible. 

Assumptions, limitations, criticisms, and weaknesses 

should be forthrightly disclosed up front. As noted 

earlier, the IPCC provides an example to follow. Th e 

results from black-box models should never be ac-

cepted. Yet the reality in many situations is that 

mathematical models are closely held in the fi les of 

consultants and environmental fi rms and are not 

revealed — even to paying customers. For example, 

many of the Danish and Dutch mathematical models 

predicting the behavior of coastal engineering struc-

tures on beaches and in harbors are off ered as black 

boxes. Our advice to policy makers is simple: Look at 

the variables in the equations presented to you and 

ask the question, “How can they be characterized?” 

And at a most elementary level, answer that question 

by applying an “embarrassment test.” If a model sim-

plifi cation of a parameter or process is embarrassing to 

state out loud as a fact, then the model cannot accu-

rately portray the process. 

 Consider, again, the simple longshore beach sand 

transport example. Modelers assume that all waves are 

the same wavelength, that all waves come from the 

same direction, that only the highest one-third of 

waves moves sand, and that grain size remains con-

stant (as does the shape of the beach). A scientist who 

said any of these things in public would be hooted off  

the podium! Yet ensconced deep within a model, such 

absurdities are considered state of the art and distort 

policy deliberations accordingly when left unexam-

ined or challenged by policy makers, laypeople, and 

other stakeholders.  

  Lesson 10: When humans interact with the natural 

system, accurate predictive mathematical modeling 

is even more impossible .      Th e paths of those who 

study social science and those who emphasize the 

natural sciences do not often cross ( Liu et al. 2007 ). 

Yet the natural processes that scientists try to predict 

are greatly impacted by human behavior. Everyone 

who has tried to predict the future of the stock market 

( Sherden 1998 ) knows the diffi  culty of predicting 

human behavior (e.g., Alan Greenspan’s now famous 

observations about the “irrational exuberance” of 

investors in the 1990s). An example of this problem 

when it comes to natural systems is the prediction by 

coastal engineers of the behavior of beaches on a river 

delta. A dam constructed upstream cuts off  the sand 

supply to beaches. In the process, all predictions of 

shoreline erosion, qualitative or quantitative, are 

thrown off  and wrong. Oil wells are drilled on the 
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delta, oil extraction causes the land to sink, and the 

sea level rises to accelerate erosion. As a result, shore-

line erosion rates rise unexpectedly. 

 Or consider what happened when Hurricane Floyd 

(1990) passed by Charleston, South Carolina, and 

how human behavior produced unexpected conse-

quences for policy makers. Weather prognosticators 

had predicted the hurricane would make landfall over 

the city. It didn’t, but at the time of the fi rst evacuation 

order, the storm was classifi ed as a Category 5. Many 

thousands of South Carolinians wisely decided to 

evacuate. Unfortunately, most found themselves 

trapped all night on jammed highways leading out of 

the city. Unexpectedly, the state’s governor overruled 

emergency management offi  cials who wanted one-way, 

out-of-town traffi  c on all lanes of the interstate (I-26) 

leaving the city. Heavy political fallout ensued because 

of public anger — not over the inaccurate hurricane 

alarm but because of the traffi  c jam. Governor Jim 

Hughes’s inexplicable decision in a time of crisis is an 

example of the problem of predicting anything that 

involves human behavior. Emergency management 

offi  cials had carefully studied and modeled hurricane 

evacuation long before the storm. But the models did 

not consider the possibility that the governor would 

declare that the incoming lanes should be kept open 

for “emergency vehicles”! 

 In fact, examples abound of how human behavioral 

reactions that are unanticipated aff ect the predictive 

validity of even the most elegant mathematical models. 

Model predictions of ecosystem evolution in the Great 

Lakes have been greatly frustrated by the introduction 

of invasive species carried in the ballast waters of foreign 

freighters. Similarly, land development patterns infl u-

ence the biology of streams, and fi shery population 

predictions are aff ected by changes in ocean current 

dynamics related to global warming. Likewise, a century 

of fi re suppression in western U.S. forests has led to 

increased numbers and size of fi res because of accumu-

lated brush cover that small fi res, left alone, would have 

naturally reduced. Finally, environmental refugees from 

the rising sea level in Bangladesh crowd into the remain-

ing habitats of the Bengal tiger and threaten its exis-

tence. What policy makers need 

to understand from all of this is 

not that mathematical modelers 

anticipate events that are not 

anticipatable. Rather, policy mak-

ers must bring their own strengths 

as students of human behavior to 

the decision-making process. 

 Confronted with the predictions of mathematical 

models, they must question how well modelers’ pre-

dictions assume a passive, inert, or nonstrategic set of 

actors. Borrowing from the policy implementation 

literature, one way to discern these behaviors is to 

engage in “backward mapping” ( Elmore 1980, 1985 ). 

Th is backward-mapping approach to decision making 

involves scenario writing that anticipates behavioral 

reactions to circumstances created by those closest to a 

problem, challenge, or opportunity. Short of engaging 

in such a full-scale exercise, policy makers need to ask 

modelers what they are assuming about human behav-

ioral reactions. To the extent that these answers fail 

the embarrassment test or seem inadequate or unreal-

istic on logical grounds, they should be wary.    

  A Final Word: Into a Brave New World of 
Qualitative Modeling? 
 Our argument in this article has been that mathemati-

cal models are wooden and infl exible next to the 

beautifully complex and dynamic nature of our earth. 

Quantitative models can condense large amounts of 

diffi  cult data into simple representations, but they 

cannot give an accurate answer, predict correct scenario 

consequences, or accommodate all possible confound-

ing variables, especially human behavior. As such, 

models off er no guarantee to policy makers that the 

right actions will be set into policy. Nor are the results 

of these realities necessarily benign for the environ-

ment; we have noted instances in which modeling 

predictions resulted in actual harm to the environment. 

 With these shortcomings in mind, we have off ered 

10 tips for policy makers hoping to discern where on 

the spectrum of utility any mathematical model pre-

sented to them fi ts. Our aim has not only been to 

demystify mathematical modeling to policy makers. 

We have also tried in the process to empower them 

to become intelligent consumers of these products. 

Th ey can become so by understanding models’ 

strengths and (more important) their limitations and 

by introducing an element of common sense into 

decision making. In doing so, our aim is to enhance 

deliberate democracy in the ENR management arena. 

 But  PAR  readers might appropriately ask, is there an 

alternative to quantitative modeling? We have already 

argued that qualitative modeling that is more grounded 

in observational data can help compensate for the 

shortcomings of mathematical models. Not only do 

they eschew the rarifi ed and 

often intimidating realm of 

mathematical complexity, but 

they also prompt experts to 

engage reality-based and readily 

understandable trend data that 

may or may not support their 

predictions. In this vein, adaptive 

management, a form of trial-and-error management, 

may provide one path into the qualitative world 

( Johnson 1999 ). 

 Using adaptive management, for example, waste could 

be stored at Yucca Mountain with the understanding 
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that it will be monitored, and the storage facilities 

might be modifi ed years and even centuries down the 

road if needed. Or the waste could be reused in power 

plants. Similarly, one could estimate how long an 

artifi cial beach will last based on how long nearby 

artifi cial beaches have lasted. Or the beach could just 

be replenished without arguments! By the same token, 

limits on the harvesting of a certain species of fi sh 

could be set and varied from year to year depending 

on annual fi eld observations of fi sh abundance. Simi-

larly, environmental impact statements could be 

viewed as fi rst estimates and monitored over time by 

an ombudsman agency with the power to shut down a 

project, mine, or factory if the environmental impact 

proves unacceptable. 

 Yet in order for alternative approaches to quantitative 

mathematical modeling to take their rightful place in 

ENR management, society will fi rst have to make 

fundamental changes in its philosophy and approach 

to designing with nature. Policy makers will have a 

major educative role to play in making that change a 

reality. Modelers have to abandon claims of accurate 

prediction of many natural processes, and laypeople 

have to appreciate these realities and become comfort-

able with this step into a qualitative world. Decades of 

optimistic claims by scientists and engineers about the 

validity of modeled predictions will not be easy to 

turn around. Th e public believes that models are the 

state of the art and has grown to expect accuracy and 

to accept the “unusual storm” excuse when things do 

not work out. Nor will the political advantage that a 

lack of transparency can off er special interests and 

agendas in society be easy to overcome. 

 Nonetheless, deference to expertise is no longer axiom-

atic, and a variety of advocacy groups have the capacity 

to go toe-to-toe with experts. At a minimum, they have 

the capability to mount eff ective public relations cam-

paigns that undermine their credibility, as the anti-

nuclear and anti – genetically modifi ed food campaigns 

by Greenpeace in Europe illustrate. Th e fi rst step, how-

ever, is raising the consciousness of the general public to 

the problems and false promise of mathematical model-

ing. Policy makers also need to reign in its excesses by 

demystifying it for citizens, insisting on transparency, 

and appreciating how best to challenge its premises in 

particular cases. Readers need not share our strong 

preference for relegating quantitative predictive math-

ematical models to the historical dustbin of failed ideas 

to take advantage of the tools for reigning in its excesses 

that we have off ered in this essay.    
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