The Restoration Webinar Series

This webinar series is brought to you by a partnership between the National Oceanic and Atmospheric Administration and the U.S. Fish and Wildlife Service.  After watching a recording, please take a moment to fill out this brief survey so we can continue to make improvements to the webinar series. 

View our upcoming Restoration webinars!

The Restoration Webinar Descriptions

To download and save standard definition video, right click on icon; save target as; choose location to save file; save.

Click here to download video!A discussion of multiple techniques used in Alabama for living shoreline and oyster reef breakwaters (01:01:19)

Presented by Judy Haner, TNC. August 28, 2014.

Mobile Bay, Alabama, the fourth largest estuary in the US, plays an important role in nurturing the finfish, shrimp, crabs and oysters that are vital to Gulf of Mexico communities. It has experienced significant loss of critical coastal habitats that shelter these species through dredge-and-fill activities, seawalls, erosion, storm events, and other causes. With funding received from the National Oceanic and Atmospheric Administration, The American Recovery and Reinvestment Act of 2009, the National Fish and Wildlife Foundation, the US Fish and Wildlife Service, The Gulf of Mexico Foundation, the National Wildlife Federation and many other organizations, TNC and our partners have put to the test six different techniques for oyster reef restoration in coastal Alabama. Traditional shoreline armoring techniques, such as bulkheads and seawalls, reflect wave energy, causing sediment to remain in suspension and adding to the destruction of shallow-water fisheries habitat. Low-crested, submerged breakwaters offer an alternative to armoring that helps to slow erosion, create habitat for fish, crabs, oysters and other animals, and protect marsh habitat that proves vital for coastal resiliency in the face of flooding, storms, and sea-level rise. This presentation will focus on a discussion of the individual techniques, their application in restoration, methods for deployment, and the monitoring techniques that are being used to track performance.

Click here to download video!Are We There Yet? The Green Seattle Partnership Turns 10 (00:57:19)

Presented by Michael Yadrick and Oliver Bazinet, Seattle Parks and Recreation Natural Resources Unit. April 9, 2015.

The Green Seattle Partnership (GSP) is a unique public-private venture dedicated to restoring 2,500 acres of forested parklands by 2025. With over 500,000 volunteer hours, work ongoing at 80 different parks, and several thousand volunteer events annually, the partnership has seen much success. Now almost 10 years into the 20 year program, we are asking ourselves, “Are we there yet?” This talk will focus on how we have tracked restoration, developed thresholds for success, and will identify some of the trends influencing future restoration efforts in the largest urban forest restoration effort in the nation.

To track restoration progress, GSP uses a combination of data collection methods. Baseline data collection in 2000 was used to develop “Tree-iage,” a restoration prioritization system that categorizes sites by invasive plant cover and existing tree cover. Work is reported by volunteers, contractors, and parks staff using a data portal, called CEDAR. Rapid inventory and mapping of restoration sites is carried out annually, and to provide more details about change over time, a plot-based monitoring program also exists. In the last several years, target ecosystems have been identified for all sites to guide restoration efforts and provide thresholds in which to measure success. As we make decisions about work planning and restoration best practices, the thresholds are starting to guide our approach, especially in understanding when we have reached the phase of long term maintenance. Data suggests a continued issue with invasive woody species in restored sites, as well as needs for higher plant diversity, and increased conifer cover. In addition, many questions exist about the applicability of these target systems in an urban environment given the fragmented condition of much of Seattle’s parklands as well as the influence of climate change.

Click here to download video!Community Based Oyster Restoration, Monitoring & Educational Outreach (00:56:44)

Presented by Jody Palmer and Sammy Anderson, Brevard Zoo, FL. May 21, 2015.

The Brevard Oyster Restoration Program includes the oyster mat and oyster gardening project. Both projects focus on utilizing the filter feeding of native oysters to improve the water quality and overall health of the Indian River Lagoon. The oyster mat project led by Brevard Zoo and the University of Central Florida along with the efforts of over 36,000 volunteers, has successfully restored 69 reefs to date in Mosquito Lagoon using scientifically designed oyster mats, returning 4.2 million oysters to the habitat. Inspired by this project, the oyster gardening project recruits Brevard County residents act as citizen scientists installing oyster habitats on their personal docks and weekly monitoring their progress. Data collected will provide information regarding the survivability and recruitment of oysters in Brevard County for future large scale oyster reef restoration in the Indian River Lagoon.

Click here to download video!Dune Restoration at Humboldt Bay National Wildlife Refuge (00:58:01)

Presented by Andrea Pickart, Ecologist, Humboldt Bay National Wildlife Refuge, USFWS. November 14, 2013.

The Lanphere Dunes (now part of Humboldt Bay National Wildlife Refuge) was the site of the first coastal dune restoration project on the west coast. Carried out from 1992-1998, this effort has been joined by additional restoration on neighboring lands, resulting in a total of 12 km of restored shoreline, with more projects planned and funded. The two restoration projects carried out on HBNWR were well documented and included long term monitoring, providing a quantitative record of restoration success that will be presented in this webinar. Restoration has focused on the removal of invasive plants that reduce biodiversity and/or alter ecosystem processes, primarily European beachgrass, yellow bush lupine, iceplant, and invasive annual grasses. On the refuge, mechanical (including manual digging) methods have been employed due to the juxtaposition of degraded with intact habitat supporting endangered plants. Revegetation is limited to planting of the native dune grass, with other species re-establishing through natural dispersal. Monitoring has shown that vegetation is now similar in cover and species composition to nearby uninvaded dunes. A graduate research project has also documented the recovery of invertebrate species as a measure of restoration success. Refuge and other FWS staff recently implemented an abiotic monitoring program to evaluate sediment budget and sand movement in restored vs. unrestored dunes. This project will provide a basis for modeling dune response to projected sea level rise.

Click here to download video!Eradication of Black Rats for Anacapa Island: Biological and Social Considerations (01:00:16)

Presented by Annie Little, USFWS. September 17, 2014.

Although islands represent only 5% of the earth’s land mass, they are home of 40% of the world’s endangered species. The removal of invasive species from islands is a powerful tool for conserving and protecting unique island species. Island eradication projects often face formidable biological, logistical, and social challenges. This presentation will highlight the eradication of black rats (Rattus rattus) from Anacapa Island, California, in 2001–2002.This project was the first invasive rodent eradication from an entire island where an endemic rodent was present and the first aerial application of a rodenticide in North America. We will discuss the planning considerations and mitigation strategies that were incorporated to reduce impacts to non-target species. Now, 12 years after the successful implementation of the project, pre and post-project monitoring data show significant positive benefits of the rat removal. In particular, a rare seabird named the Scripps’s murrelet (Synthiboramphus scrippsi) has shown a remarkable positive response.

Click here to download video!Erie Marsh Preserve Coastal Wetland Restoration and Enhancement (00:50:18)

Presented by: Christopher A. May, Restoration Director of Michigan, The Nature Conservancy. October 17, 2013.

Erie Marsh Preserve in western Lake Erie includes 945 acres of Great Lakes coastal marsh within a system of dikes constructed during the 1950s. This project will ultimately restore and enhance the 945 acres of coastal wetlands in 10 units through the construction or improvement of dikes, distribution canals, water control structures, and the installation of a new water supply system and fish passage structure. The fish passage structure will restore a hydrologic and physical connection between Lake Erie and the managed dike portion of Erie Marsh Preserve. The diked wetlands are also critically important for spring, fall, and winter staging, feeding, and resting of waterfowl and other wildlife, as well as home to unique plants. The improved infrastructure will provide capacity for long-term, adaptive management of a high-quality coastal wetland complex and control of invasive Phragmites. Pre- and post-restoration monitoring includes water quality, fish, birds, herpetofauna, and vegetation. Project partners include U.S. Fish and Wildlife Service, Ducks Unlimited, Michigan Department of Natural Resources, and the Erie Shooting and Fishing Club.

Click here to download video!Evaluating Restoration Effects on Age-0 Salmon Habitat in a Large Regulated River System in Northern California (00:47:27)

Presented by Damo Goodman, USFWS. February 18, 2015.

To combat decades of anthropogenic degradation, restoration programs seek to improve ecological conditions through habitat enhancement. Rapid assessments of condition are needed to support adaptive management programs and improve the understanding of restoration effects at a range of spatial and temporal scales. Previous attempts to evaluate restoration practices on large river systems have been hampered by assessment tools that are irreproducible or metrics without clear connections to population responses. We modified a demonstration flow assessment approach to assess the realized changes in habitat quantity and quality attributable to restoration effects. We evaluated the technique’s ability to predict anadromous salmonid habitat and survey reproducibility on the Trinity River in northern California. Fish preference clearly aligned with a priori designations of habitat quality: the odds of observing rearing Chinook Salmon or Coho Salmon within high quality habitats ranged between 10 and 16 times greater than low qualities, and in all cases the highest counts were associated with highest quality habitat. In addition, the technique proved to be reproducible with “substantial” to “almost perfect” agreement of results from independent crews; a considerable improvement over a previous demonstration flow assessment. The technique is now being implemented to assess changes in habitat from restoration efforts at several scales and inform adaptive management decisions.

Click here to download video!Expanding living shorelines within the ACE Basin National Estuarine Research Reserve (NERR) to protect habitat and to reduce climate change vulnerability through the application of collaborative science-based habitat restoration (00:56:08)

Presented by Dr. Peter Kingsley-Smith, South Carolina DNR. March 12, 2014.

In the summer of 2012 the South Carolina Department of Natural Resources (SCDNR) was successful in acquiring a substantial 2-year Federal grant from the National Estuarine Research Reserve (NERR) Science Collaborative funding opportunity. The overall goal of this project is to address the local management problem shoreline loss through erosional processes that are likely to be exacerbated under scenarios of future global climate change-driven sea level rise. This project is intended to increase the resiliency of critical ecological communities to climate change-driven sea level rise by creating living shorelines in the form of intertidal oyster reefs (Crassostrea virginica) that restore habitat, reduce erosion, improve water quality, and creating ever-growing, sustainable breakwaters to protect shorelines in an era of sea level rise. Abundant wild populations of oysters in South Carolina produce very high rates of recruitment, such that the provision of suitable substrate at intertidal elevations can rapidly lead to the establishment of new oyster reef habitat. Researchers at the SCDNR have a wealth of experience utilizing a variety of both natural and artificial substrates (e.g., shell bags, oyster castles, crab traps, loose shell) and techniques for conducting habitat restoration and enhancement that they have been able to bring to this project through their role as the applied science team. This presentation will highlight stakeholder involvement, site selection processes, reef building achievements and challenges in year 1 and an outline of planned events for the months to come prior to the conclusion of this project in the summer of 2014.

Click here to download video!Fantasy Football for Community Restoration: Using Plant Traits to Restore a Hawaiian Lowland Wet Forest (00:51:32)

Presented by Laura Warman, Institute for Pacific Islands Forestry. September 24, 2014.

As novel assemblages of native and non-native species become increasingly common globally, many conservation and restoration efforts have concentrated on the removal of exotic (and often invasive) species. However, in some cases, removing non-native species is no longer economically or ecologically feasible. This is the case in Hawai’i, where more than half of the plants on the archipelago are exotic and where novel forests currently dominate the remaining areas of lowland wet forest. Furthermore, while there are many invasive plants species in Hawaii, some exotic species are thought to be providing important ecosystem goods and services (including benefits to native species). How can we keep native species in the lowland forests and maintain ecosystem goods and services, while minimizing the negative effects of invasive species? We suggest an approach similar to fantasy football, where ‘teams’ of species are picked to work together form self-sustaining units which maximize benefits for native biodiversity, carbon sequestration and sustainable forest structure. We based our choices of ‘players’ on functional trait characteristics of both native and non-native species, and on functional diversity indices from existing novel forests with varying degrees of domination by exotic species.

Click here to download video!Implementing a Landscape-Level Oak Habitat Restoration Initiative with Local Workforce Partnerships (01:03:56)

Presented by David Ross, Department of Interior, Marko Bey, Lomakatsi Restoration Project and CalLee Davenport, USFWS. January 22, 2014.

In August of 2010, a formal partnership was established between the U.S. Fish and Wildlife Service, the Lomakatsi Restoration Project, the Natural Resource Conservation Service (NRCS), Klamath Bird Observatory (KBO), and multiple other state and federal agency partners, and conservation organizations to expand oak habitat restoration on private lands in Douglas and Jackson Counties in Oregon, and in Siskiyou County in California. This webinar will discuss the ongoing partnership to restore oak woodlands and savannas along the California-Oregon border, an umbrella habitat for a suite of neotropical birds and listed T&E plants.

Click here to download video!National guidelines for metrics used for monitoring oyster restoration projects: A review of the Oyster Habitat Restoration Monitoring and Assessment Handbook (00:45:54)

Presented by Bryan DeAngelis, The Nature Conservancy . June 23, 2014,

The restoration of oyster reef and beds in the US has continued to increase in number and scale of projects in order to restore the services lost along with the oyster habitats. Despite this maturing of oyster restoration there remains a diversity of techniques and metrics chosen to demonstrate the success or failure of an individual project or technique. The diversity of techniques and metrics employed has made it difficult or impossible to regionally compare the success of the different approaches to oyster restoration around the US, or to evaluate larger regional performance or impact from multiple restoration projects. A coalition of restoration practitioners from the west, gulf and east coasts, led by members of the NOAA Restoration Center, The Nature Conservancy, the University of Southern Alabama and Florida Atlantic University has sought to overcome this difficulty by describing baseline monitoring metrics that will allow for basic comparison between projects as well as accommodate different restoration designs and site based constraints, as well developing guidelines for assessing optional restoration goal-based metrics. This presentation will focus on the Universal Metrics (i.e. those prescribed for every project) and discuss the multiple factors that need to be considered when creating universal metrics, and briefly outline the Restoration Goal-based Metrics presented in the manual. The presentation will also briefly discuss the next steps required by the restoration community to fully integrate adaptive management, and potential opportunities for accomplishing that.

Click here to download video!Navigating State Regulatory Arenas: Differing Approaches for Permitting River Restoration (00:46:13)

Presented by Serena McClain, Director of American Rivers. December 18, 2013.

Over the past 100 years or so, more than 1,100 dams have been removed from rivers across the U.S. The story of these dams varies from failure of dilapidated, abandoned dams that were later cleared out of rivers to tiny three-foot weirs to a 1,200-foot long earthen behemoth. While some of these were removed before modern environmental laws even existed, the majority of these structures have been removed in the last fourteen years. Methods of removal vary almost as much as the size and type of dam removed, ranging from dams that were removed by hand in ecologically sensitive areas to dynamite to full-scale water diversions. This discussion will look at the reasons for this variability, focusing on the affect the regulatory environment can have on project implementation. To do this, we will examine state and federal regulatory environments and the common challenges faced when trying to get a restoration project permitted (while examples will focus on dam removal, both issues and advice apply to a broader category of river restoration). We will also examine what works and the states where regulatory agencies have developed tools and/or practices that foster successful restoration projects. The discussion will end with the top five tips for improving your state’s regulatory process.

Click here to download video!Of Rails and Rice: A Successful Restoration Model of Wild Rice (Zizania Aquatia) (00:50:03)

Presented by Gregg Kearns, Paxtuent River Park, MD. December 11, 2014.

Well known for a fall spectacle of maturing wild rice (Zizania aquatica) and migrant waterbirds, the tidal freshwater marshes of the Patuxent River, Maryland, USA, experienced a major decline in wild rice during the 1990s. We conducted experiments in 1999 and 2000 with fenced exclosures and discovered herbivory by resident Canada geese (Branta canadensis). Grazing by geese eliminated rice outside exclosures, whereas protected plants achieved greater size, density, and produced more panicles than rice occurring in natural stands. The observed loss of rice on the Patuxent River reflects both the sensitivity of this annual plant to herbivory and the destructive nature of an overabundance of resident geese on natural marsh vegetation. Recovery of rice followed 2 management actions: hunting removal of approximately 3,700 geese during a 9-year period and reestablishment of rice through a large-scale fencing and planting program.

Click here to download video!Restoration of Lake Apopka's North Shore Marsh: High Hopes, Tought Times, and Persistent Progress (00:45:29)

Presented by Dr. Heath Rauschenberger, Karst and Cave Biologist, U.S. Fish and Wildlife Service. July 23, 2014.

The story of Lake Apopka is a familiar one to many Floridians and has gained international notoriety. The 12,500-ha lake was once a world-class bass fishery. Then, a century-long decline occurred, traced to the loss of over 8,000 ha of wetlands to farming operations, agricultural discharges laden with phosphorus to the lake, treated wastewater discharges, and input from citrus processing plants. The state of Florida and the Federal Government purchased the property with the goal of restoring the aquatic habitat. Shortly after flooding in the winter of 1998–1999, a bird mortality event occurred, resulting in the deaths of 676 birds, primarily American white pelicans (Pelecanus erythrorhynchos), and also including 43 endangered wood storks (Mycteria americana), 58 great blue herons (Ardea herodias), and 34 great egrets (Casmerodius albus). The deaths of the birds, attributed to pesticide toxicosis, resulted in years of research and remediation to ensure the future safety of wildlife on the property. Presently, about 3,000 ha of wetlands have been rehydrated since resuming restoration activities, with no adverse effects to wildlife. This webinar will present the history of Lake Apopka, the efforts to restore it, and what we have learned along the way.

Click here to download video!Riparian Restoration Along the Colorado River in Grand Canyon National Park: Successes and Challenges of a Pilot Watershed Stewardship Project (01:13:08)

Presented by Melissa McMaster, Plant Biologist, Grand Canyon National Park. May 7, 2014.

Granite Camp is a very popular site for backcountry and river users in Grand Canyon National Park and like many areas along the Colorado River corridor, it has been adversely impacted by the operations of Glen Canyon Dam, high recreational use and the introduction of non-native plants species, particularly tamarisk. In 2009, the northern tamarisk beetle arrived in the park and it has been successfully defoliating the tamarisk growing along the river. The presence of the beetle may result in widespread mortality of tamarisk and possibly adverse effects on the riparian ecosystem and visitor experience. The objectives of this project were to test various methods of riparian restoration, enhance wildlife habitat and enrich the overall visitor experience at the site. Crews removed tamarisk trees from the site and then replanted the area with a suite of native trees, shrubs, forbs and grasses to create a diverse and functioning ecosystem. This was the first large scale attempt at restoration along the river and various methods of plant propagation and collection were tested. The results of this pilot project will help to assess the feasibility and practicality of proactively planting native species at other remote sites along the river that are currently dominated by tamarisk.

Click here to download video!Scaling Up Estuary & Floodplain Restoration in Puget Sound (00:48:16)

Presented by Jenny Baker and Julie Morse, The Nature Conservancy. December 2, 2014.

The Nature Conservancy’s Fisher Slough and Port Susan Bay estuary restoration projects in northern Puget Sound, Washington, were planned and implemented in collaboration with local communities to include project elements that provided non-ecological benefits such as jobs, reduced flood risk and updated flood protection and drainage infrastructure. The multiple community benefits approach used at these two sites has now been widely embraced in Puget Sound as evidenced by a $33M investment by the state for additional multiple benefit projects that will significantly increase the scale of Puget Sound recovery.

This presentation will focus on the approach used and benefits gained at the two project sites, as well as the Puget Sound-wide “Coordinated Investment” project that was recently funded by Washington State.

Click here to download video!Streams & Floodplains: Explaining Stream Behavior to Landowners (01:07:17)

Presented by Dr. Janine Castro, USFWS. October 16, 2014.

Do you find yourself trying to describe “how streams work” or “why streams meander” to a landowner or the public? If so, this webinar is for you. While the questions are simple, the answers are complex. This webinar will provide you with a framework and a conceptual model so that you are prepared to answer these tough questions.

Stream restoration is all about managing stream energy – how it is dissipated, in what form and where. How the energy is dissipated is the key to understanding stream responses, such as bank erosion and channel incision, especially in terms of stream management.

Click here to download video!Technical, cultural, and legal challenges associated with implementing four barrier removal projects on a high priority tributary to the Taunton River in Taunton, MA (01:00:30)

Presented by Beth Lambert, Massachusetts Division of Ecological Restoration and Cathy Bozek, The Nature Conservancy. February 11, 2014.

The Taunton River in Massachusetts sustains regionally significant runs of river herring. Tributaries to the Taunton River, many of which are fed by high quality streams, natural ponds, and intact wetlands, have the potential to support herring populations of hundreds of thousands of fish. Yet, many major tributaries are blocked by dams. The Mill River is one such tributary: four dams within close proximity to each other blocked river herring from accessing more than 30 miles of tributary and mainstem habitat and 400+ acres of natural and artificial pond. In 2007, a large partnership of federal, state, local, and NGO organizations began working together to remove three dams and build a fish ladder at a fourth dam. Although the four dams were in close proximity to each other, each had a unique combination of technical, cultural, or legal challenges that stood in the way of removing the barrier. This presentation 1) presents the overall project setting and project objectives; 2) highlights the major challenge/solution for each barrier; and 3) shares preliminary results from each completed barrier removal. Challenges examined in detail include a) cost-effective approaches to managing highly contaminated sediment; b) negotiating with a large company to remove a small dam; c) inserting restoration goals into complex bridge and dam construction projects.

Click here to download video!The Bio-Geo-Socio-Chemistry of Urban Riparian Zones (01:03:19)

Presented by Peter M. Groffman, Cary Institute of Ecosystem Studies. February 12, 2015.

Riparian areas are “hotspots” of plant-soil-water-microbial-human interactions in watersheds. Urban land use change has been shown to have dramatic effects on these interactions altering “connections” between streams, riparian zones, upland ecosystems and people. Efforts to restore urban riparian zone need to focus on reestablishing these connections. Geomorphic stream restoration designed to reverse structural degradation can restore biogeochemical functions but also considering the “human element” create positive feedbacks between ecological restoration and human preferences that can be key for achieving specific biological, chemical and social goals in urban and suburban watersheds. In this talk I will highlight results from research on the bio-geo-socio chemistry of urban riparian zones in the National Science Foundation funded Baltimore urban Long Term Ecological Research Project and discuss relevance and applications of this work in more arid regions.

Click here to download video!The unique legal, scientific, and ethical challenges of restoration in wilderness: a preliminary framework to help make defensible decisions (00:51:51)

Presented by Drs. Beth Hahn and Peter Landres, Aldo Leopold Wilderness Research Institute, USDA Forest Service. June 1, 2014.

This webinar will present a draft framework for evaluating and deciding whether to approve proposals for ecological restoration inside designated wilderness. The intent of this framework is to improve transparency in how these decisions weigh and balance the need for restoration and preserving wilderness character.

Click here to download video!Wood Replenishment: A Superhero in the Battle against Climate Change (01:00:20)

Presented by Scott Nicolai, Yakama Nation Fisheries. January 2, 2015.

Pacific Northwest streams have been wood-deficient and degraded for generations. In many locations wood
removal and channel straightening have lead to incision, disconnecting streams from their floodplains. In
eastern Washington State, upland forests are typically overstocked due to the legacy of forest fire suppression. By using excess coniferous trees as a stream restoration material, projects can occur at low cost using simple techniques. This approach has been taken in Taneum Creek, a high priority tributary to the Yakima River in Kittitas County. Beginning in 2008, over 1250 trees have been placed at 50 locations. The
first of two phases involved thinning adjacent uplands, and moving full-length trees to the stream with manual
tools and Washington Conservation Corps labor. In the second phase, collaboration with WDFW and USFWS
allowed a more intensive effort involving heavy equipment. Forest thinning of a four acre stand was done to provide 400 full-length trees at extremely low cost. Trees with rootwads were also obtained off-site and transported to the project area. All work was done utilizing recommendations for wood replenishment in
WDFW’s “Stream Habitat Restoration and Guidelines”. Loose logs were placed without anchorage. The
project was designed with pencil and paper by tribal habitat biologists. Work was complete in fall 2010. Six
months later, a historic flood (estimated 100-year recurrence interval) occurred in Taneum Creek. Floodplains were activated, over two miles of side channels were created and colonized by beavers, countless native riparian plants germinated and began to flourish. The project serves as a buffer against the adversity that climate change poses to cold-water fishes and other wildlife in Taneum watershed. The project also demonstrates that low-cost methods and designs can be utilized to restore upland forests and achieve watershed restoration simultaneously.