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Structured Decision Making

What is “structured decision making?”
Structured decision making (small letters) is a concept rather than any particular method.  To structure decision making means, generically, to decompose decision problems through a series of analysis steps that help identify which solutions bring you closest to your objectives.  Structured decisions use an explicit framework for making choices based on a rational and often quantitative analysis of ‘objectives’ and ‘facts,’ typically employing one of a suite of decision analysis methods.  Structuring or designing the decision process and the use of technical methods help assure thoroughness and control for the biases inherent to human cognition in complex and uncertain situations.  Decision structuring methods range from quite formal or ‘hard’ mathematical approaches to ‘soft’ techniques including eliciting and evaluating subjective judgments.  
To begin you must define carefully both the problem and your objective(s).  Ultimately, objectives derive from our values or what we want to achieve; in government work, objectives are based on legal mandates and agency values, but still must be clearly understood and spelled out in measurable terms.  Once the problem and objectives are clear, you develop or identify alternatives and complete a rational, transparent analysis of the alternatives to determine how they perform in relation to your objectives.  The key step in analysis is decomposing the problem into its component or contributory parts.  Decomposition fosters clarity, understanding, and reliable performance, and avoids the need for sweeping or holistic answers when problems are complex and confusing.  The information used for the analysis may be empirical information (data), but it also can come from subjective rankings or expert opinion expressed in explicit terms.  While the range of possible decision choices is often prescribed in regulatory work, e.g., to list a species or not, the concepts of being very explicit (yes, quantitative!) about objectives and structuring the decision analysis to help determine which choice is the most ‘correct’ still applies.
In sum, decision making is structured to improve our chances of making rational and relatively optimal decisions in complex situations involving uncertainties.  Rational means that most free-thinking individuals, when given the same information, would agree the decisions are consistent with the specific objectives and general cultural norms; i.e., reasonable and logical.  The key components are exploration and definition of the problem and objectives, and careful, explicit, usually quantitative analysis of alternative solutions.  The purpose of decision structuring is not to produce formulaic outcomes (although the ‘hard’ approaches described below appear to do this when they aren’t used with reflection and sensitivity analysis).  Instead, the outcome of decision structuring should be a more rational, transparent decision whose basis is fully revealed to both the decision maker (intuitive decisions are often not even clear to ourselves!) and others.
Thus we can produce, in the public realm, more defensible decisions.

Why bother? 
Human minds have limited capacity to analyze complex information and probabilistic events and are susceptible to some fairly predictable biases, but can improve their performance substantially with the aid of structured techniques.  While any decision could benefit from some structuring, the methods we’re describing are designed and most useful for dealing with complex problems involving uncertainties without obvious solutions.  Sounds like endangered species management!  
“Hard” decision making approaches such as linear programming (e.g., where numerical algorithms produce the answer) arose from recognition that finding the most optimal solution to some complex problems requires computations beyond what human minds can complete unaided.  Most problems, however, involve some elements of subjective judgment and preferences such as risk tolerance, trade-offs among multiple objectives, or other features that aren’t appropriate for hard techniques.  For these soft problems, structuring still helps us deal with some striking limitations in human cognitive abilities under uncertainty and complexity, getting us closer to the best or a better set of options than we could figure out ‘in our heads.’  
In the public sector, decision structuring has the added advantage of forcing us to make the basis for decisions highly transparent.  While some analysis techniques require mathematical or logical computations that seem obscure to non-practitioners, they are still fully explicit (numbers can’t be ambiguous!) and can be documented in the decision record.  Similarly, the criteria for making choices, and the particular information used and how it led to a decision are ‘on the table’ even when they come from subjective judgments rather than objective data.  Structured decisions leave a strong administrative record because the problem description, decision criteria, and analysis are inherently exposed.  This contrasts with the typically general narratives written to document how unstructured, subjective decisions are reached (e.g., out of the black box of someone’s head), which usually fail to demonstrate an unambiguous path from the information considered through the objectives or legal mandates to the decision.
Purpose of Structuring Decisions
In a nutshell, the purpose of structuring decisions is to help:

· get you closer to your objectives than you can with unaided (intuitive) decisions

· force you to be thoughtful and explicit about measurable objectives

· handle complex problems, especially involving uncertainties

· improve subjective judgments by controlling for biases and decomposing complex questions

· be transparent so others—i.e., the public—can understand the reasoning behind decisions (often through some degree of quantification)

· separate risk evaluation (“facts”) from risk management (“values” and preferences or legal expectations for risk tolerance or avoidance); make explicit when and how each is used

· treat uncertainties explicitly; linked to risk tolerance standards
Relationship of Structured Decisions to Group Processes and Conflict Resolution
A fundamental assumption of structured decision making is that we want to be rational.  

When groups are involved in a decision, participants must agree to make their objectives fully explicit and to complete the analysis systematically and explicitly in relation to those objectives.  Techniques for group facilitation can be essential to this process; however, decision analysis is primarily about analysis not how to deal with stakeholders or group dynamics.  Thus, it is not the same as conflict resolution or other group or teamwork processes that may (or may not) lead to decisions.  Parties to decision analysis must agree on the goal: finding the best solution(s) to a stated problem through dispassionate analysis.  Decision analysis may help foster conflict resolution in some situations by finding ‘win-win’ solutions, but that is a bonus.  It might help to the extent that stakeholders respond to rationality, but since the key steps in decision analysis are defining objectives and preferences against which ‘data’ are analyzed and compared, those subjective preferences and objectives must be coherent and clear.  For structured group decision making, conflict resolution should have been completed—to the point of getting buy-in to solution-searching, rather than position-promoting—before embarking on decision analysis.  Accurately defining the problem, objectives, and value-based preferences, are often the most challenging part of structured decision making—and all the more so when the problem requires a group rather than individual decision.  Many group facilitation methods are very helpful in this work, but again, they are used toward the end of rational, objectives-driven decision making.
Relationship of Structured Decisions to Risk Analysis and Risk Management

Science does not give us answers about how to behave (make choices) in the real world; science only gives us information about the real world that we can use to make choices based on our—or the public’s—values and preferences.  Choices for how to act under uncertainty (including to implement laws or regulate public activities) inevitably involve value-based choices about how much risk to accept or how many other consequences to accept in order to reduce risks.  These ideas are often described by the terms risk analysis and risk management.  Risk is the likelihood of undesirable things happening.  Risk analysis is the investigation and description of what is likely to happen, or what could happen under different potential futures.  So, risk analysis is the science part.  Risk management is the process of making choices about what to do given the risks, the uncertainties about the future and our predictive abilities, and our preferences or mandates for accepting or avoiding risks in light of other aspirations.  
In endangered species management, for example, performing a population viability analysis for proposed management strategies is risk analysis, while developing alternative management options and establishing the criteria for choosing among them, as well as actually implementing the tasks to alleviate risk, is risk management.  Structured decision making fits well into this risk-based description of endangered species management.  By structuring decisions we can be very explicit about the separation of, and the key links between, scientific risk analysis and value- or legal-mandate-based management choices.  We must have clearly defined objectives (what we are trying to achieve or avoid), against which the analysis is performed and compared.  Quantification is the least ambiguous and most useful way to define objectives; most decision analysis methods require it.  Note that in government or regulatory work, the value-based preferences for risk management stem ultimately from enabling laws and policies not our personal values.  Yet since these directives are often expressed only in very general terms, we must still interpret, specify and/or quantify the agency’s risk management objectives before we can analyze decision options in a structured process.
A useful way to think about risk preferences comes from statistical hypothesis testing.  When we have incomplete information about the real world (e.g., only samples or uncertain information), we have a non-trivial chance of drawing erroneous conclusions about cause-effect relationships or erroneous projections about the future.  We can make two types of errors: rejecting a null hypothesis of no effects when it is really true (Type I error) and accepting
 a null hypothesis of no effects that is really false (Type II error) (Table 1).  As you might remember from your introductory stats/science courses, the risk of these two error types is reciprocal—we can be very cautious about one and lower the chance we’ll make that mistake, but it comes at the cost of increasing the chance of making the other type of mistake.  (The only way to reduce both error types is to gather more and better information if that is possible—e.g., increase sample size).  Type I errors are described by the term ‘significance level,’ denoted by α.  Scientific results are said to be ‘significant’ when the α-error likelihood falls below some arbitrary but widely accepted, low level such as .05.  In statistics, the likelihood of a Type II error (denoted β) depends upon the chosen α tolerance and the data (e.g., β error is an outcome).  The only way to reduce β-errors is to increase the acceptable α-level (or gather more data).  
Table 1. Type I and II errors for a null hypothesis of no effects (e.g., a null hypothesis that a population is stable).
	Null
	Accept
	Reject

	True
	Correct conclusion
	Type I error

	False
	Type II error
	Correct conclusion


In endangered species risk management we need to think through and define our error tolerances, both generally and in statistical terms where needed.  Before automatically accepting the need for high significance levels (traditional α-levels <.10) from scientific studies, for example, beware that the underlying subjective value or risk preference in this standard is to begin from a null hypothesis of no effects (e.g., the species is fine) and to only reject this assumption (e.g, the species is declining or at risk) when the evidence is overwhelming.  In narrative terms, this is an ‘innocent until proven guilty’ or ‘evidentiary’ risk acceptance standard.  It is the norm in scientific research, but that does not mean it accurately reflects societal values for risk management.  The converse would be a ‘precautionary’ risk avoidance standard, which shifts the burden of proof to demonstrating that a problem does not exist.  To make such a shift we either have to accept higher α-levels (risk of crying chicken little) to lower the chance of accepting a false no-effect null hypothesis (head-in-the-sand risk) or invert the null hypothesis from, for example, ‘no decline’ to ‘the species is declining’ so the burden is on proving that it is not.  
In government and regulatory work these error or risk standards may be provided to us, though often quite loosely or through case law rather than explicitly in legislation or policy.  A typical expectation may be a ‘weight of the evidence’ standard that seems to split the difference or attempt to balance α and β error risks.  At any rate, as government employees we should be careful in developing the standards for specific decisions not to impose our personal beliefs; standards should derive from legal mandates, agency norms, and public preferences.  Most important is recognizing that these preferences are based on societal values and derived legal mandates, that they involve trade-offs (we can’t eliminate uncertainty and knowledge gaps), and that transparent, consistent, defensible decision making compels us to be explicit about the risk tolerance-avoidance standards we use.
General Steps for Structuring Decisions
Here are some general steps that characterize structured decision making (Fig 1).  We’ve taken many of these ideas from the best texts on decision analysis (see the bibliography), with some generalization and expansion.  The steps need not happen in exactly this order (some will need to be revisited as you proceed) and depending on the problem and approach you won’t need all these steps in all cases.  For example, step 6, listing alternatives, may not be important for direct regulatory decisions.  But step 4, defining terms, is particularly critical for any group decision process.  For the ‘hard’ techniques, you often can’t incorporate uncertainty directly (step 10), but you may through alternative runs of the analysis (e.g., step 11, sensitivity analysis).  Consider this a ‘tickler’ list, getting-started organizational guide, or just a list of heuristics (general rules-of-thumb).
1. Define the problem you are trying to solve
2. Identify the legal mandates and driving values you’re working toward

3. List and define your objectives (simple English first; measurable terms come at step 8)

4. Decompose the situation/problem (influence diagram)

5. List and define terms, check (repeatedly) for understanding

6. Develop or identify alternative resolutions or decision choices; e.g., describe the decision space

7. Decide what kind of problem you have and, thus, what decision making approach and analysis tools to use (see the Toolkit & Fig.2)
8. Building on steps 2-3, define the measurable attributes (step down from objectives) needed to evaluate choices appropriately for the approach you’re using (from step 7).  If multiple objectives are involved and you develop weights for them, be careful to document how these are linked to specific attributes and explain the reasons for the weightings.  
9. Identify and collect information needed for the analysis (again, appropriate to the tool you are using).  If information sources conflict or have variable quality, consider explicitly weighting or grading them by their relative reliability and appropriateness to your situation.  For example, experimental study results provide stronger cause-effect inference than either observational studies or professional judgment; however, generally they cannot be extrapolated beyond the experimental study site or conditions (e.g., high rigor, but narrow scope).  
10. Use the analysis approach/tools to explore the alternative choices and consequences (including the status quo of ‘no action’ decisions)
11. In the process explore and address uncertainties; are they documented and incorporated?  Have you considered potential ‘regrets’ in your risk tolerance preferences and decision choices?  In other words, don’t consider only what you’d most like to achieve, also consider what you most want to avoid.  
12. Do some sensitivity analysis; if the ‘available information’ was different or you weighted alternative information differently, how does it change the analysis and recommendations?  Are your choices ‘robust’ to your uncertainty about specific objectives or mandates?

13. Decide on a course of action (may be provisional or iterative).  Be thoughtful; you still must apply human judgment before accepting any results from quantitative decision analysis purporting to give the ‘best’ solution.  Consider the sensitivity analysis before deciding.
14. Monitor the decision outcomes to learn for future decision making
Figure 1. General steps for structuring decisions.  
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The Structuring and Analysis Toolkit

Toolkit Overview
Initial work in this field began during WWII with the development of optimization or hard analysis approaches for problems like industrial productivity.  While optimization problems are complex, the methods were developed primarily for single objectives (e.g., economic gain) where uncertainty is not an issue or is ignored.  After 1960, decision analysis methods were developed to deal with probabilistic situations (uncertainty) and explicit use of subjective judgments, relying in part on new psychological research about human perceptions and behaviors.  Subsequently, decision analysis methods were adapted to deal with multiple-objective problems through explicit definition of values and trade-off preferences.  The most complex situations involving both multiple objective problems and high uncertainty have been harder to crack, and fewer techniques remain available for structuring those problems.  All of these approaches are designed for dealing with ‘one-off’ or one at a time decisions.  Additional methods are available for structuring repetitive decisions, including statistical modeling of expertise and computer-aided decision guidance or ‘expert systems.’

Understanding the nature of your decision problem helps greatly in picking the type of tools you want to use to help you analyze your choices.  Decision problems can be described by a set of dichotomies.  While many problems don’t fall neatly into these categories, the descriptions can still help you get started.  First, some problems have only minimal uncertainty about what will happen if you chose a particular course, or at least you can analyze the problem as if it had no uncertainty because it is not of critical importance.  These are called deterministic problems because the results are determined strictly, without variance.  The opposite is stochastic problems where the outcomes include some elements of chance or at least enough uncertainty on our part (lack of knowledge) that the best we can do is describe the likelihood of particular outcomes resulting from specific courses of action.  Ecological risk assessments are inherently stochastic, though we are sometimes (not often) able to treat risk problems as if they are deterministic for simplicity in analysis.
The next major dichotomy is whether the problem contains only one or one overriding objective, or requires that we consider multiple, somehow competing objectives.  If multiple objectives are hierarchical—some much more important than others—we can sometimes simplify the analysis by treating the lesser objectives as constraints (for example, see optimization, below).  Otherwise we have to use some process to explicitly weight the objectives and measure our alternative choices on comparable scales.  These multiple-objective approaches invariably require work with valuation.  The last problem dichotomy is between one-off and repetitive problems.  If we face the same or similar problems repeatedly we shouldn’t need to perform detailed analysis every time but can develop tools that support consistent, transparent decisions. 
Figure 2 summarizes how the array of available analysis tools addresses four classes of decision problems categorized by the number of objectives and importance of uncertainty.  Historically development of these tools has progressed from the upper left to the lower right quadrant.  That progression or axis can be described also as a shift from ‘hard’ analysis that focuses on mathematical computations with complex information (‘data’) to ‘soft’ analysis that focuses on less rigid assessments dealing with complex value choices under uncertainty.
Figure 2.  Techniques for structuring one-off decisions.

	
	No Uncertainty
	Uncertainty

	Single Objective
	Optimization
	Decision Analysis

Risk Analysis

Simulation Modeling

	Multiple Objectives
	Multiple Objective Decision 
   Analysis
Optimization 
	Multiple Objective Decision 

   Analysis (with probabilities)


Influence Diagrams, Causal Webs, and Problem Models

The first two steps in our flow chart for structuring decisions (Fig 1)—steps you’re likely to revisit repeatedly—are defining the problem and your objectives.  We don’t talk much about those crucial steps here, focusing instead on the subsequent analysis.  But we reemphasize that those are absolutely essential activities to engage in and think through carefully.  In our own work under the Endangered Species Act (ESA), we’ve found it not only helpful but necessary to become well versed in legislative history, policy, and implementation practice as well as keeping up with relevant research literature, in order to make sure we define the ‘correct’ and most applicable objectives to any problem.  If you’re dealing with a less regulatory problem, try reading Keeney’s book on Value-Focused Thinking (see bibliography) for helpful guidance if you’re stuck at those top steps.

A really helpful idea if you’re struggling with the top box—defining your problem—is to jump ahead to the third box—decomposing the problem.  The tool most books will recommend for problem decomposition is to draw an ‘influence diagram’ of how all the relevant or major factors relate to your objective.  Influence diagrams address decision choices, but in our work they’ll often be equivalent to ‘causal diagrams’ or ‘causal webs’ seen in ecological science literature and ‘cause-effect models’ from environmental impact assessment literature (see Couglin and Armour 1992 for more problem decomposition terminology).  A distinction of influence diagrams, if they are to be converted directly into decision analysis ‘trees’ (see below), is that they cannot contain any loops (e.g., feedback between nodes).  All paths must lead toward the decision attribute.

For example, Figure 3 is a very simple influence diagram for an endangered species problem where we’re considering the environmental factors that influence whether the species declines below a specific threshold and thus, the decision of whether or not we should take action.  In a nutshell, the diagramming step forces us to boil down the ESA threats analysis into a clear and concise depiction of what really counts for the critical outcomes and in what ways.  We’ve found this tool to be extremely useful in various situations, from developing a consensus view among experts conducting subjective extinction risk analysis to designing simulation models.
Figure 3.  A simple influence diagram for an endangered species.
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Even if you’re not struggling to define your problem or objectives, we suggest you complete an influence diagram anyway because you’re likely to find you haven’t done as good a job identifying your real situation as you thought.  Ecologists tend to focus on details rather than the big picture—we’re trained to think about the complexity of nature and how subtly all the parts and processes interact.  In environmental impact assessment we are likewise drilled in concern about insidious cumulative impacts.  For ESA implementation, the equivalent norm is exhaustive accounting of all potential threats—the full blown threats and, for listing, ‘five-factor’ analysis.  This tendency to concentrate on detailed, thorough accounting shows up when biologists build or plan models, with the result that many descriptive and predictive models are designed as bottom-up, detail-driven, complex projects.  We suggest this approach is inefficient and may be misleading, because when you get distracted by so much detail (much of it ultimately extraneous) you are unlikely to stay focused on the problem you are trying to solve.

The alternative approach begins by describing your problem by beginning with your objectives or outcome of concern, then working downward from the most influential toward progressively less critical factors.  You build an influence diagram from the top down—problem first, and then work back through layers of factors that influence that outcome.  You can still consider a full check-list of factors that may be important (i.e., the ESA five factors or a laundry list of potential threats) so you don’t miss something that is in fact important, but you should be able to sort them into clusters and a hierarchy of relative importance.  Your initial influence diagram should indicate the highest level of influences; later you can build down in detail if it turns out to be necessary for your analysis.  

Sound easy?  Not often—but the effort is rewarded in far greater understanding of your situation, and possibly redefinition of what you were trying to achieve to begin with.  It’s even more challenging for a group to build an influence diagram, but again the reward is shared understanding and pooled information.  Influence diagrams also make clear how you are stepping down your objectives to measurable attributes—a key step in structured decision analysis.
Optimization (‘hard” approaches)

We’ll start our brief overview of specific toolkit tools in the upper left quadrant of Figure 2.  The optimization tools in this box come from a field of study called operations research or management science.  Optimization generally refers to using mathematical algorithms to find optimal solutions to problems of allocating resources.  Mostly they ignore any uncertainty (e.g., if you buy x acres you will protect y species, period).  The objective is described by an ‘objective function’ or mathematical expression, as are any binding constraints on the range of solutions (solution space).  The oldest, easiest, and most commonly used optimization tool is linear programming, which you can complete in a spreadsheet (e.g., the Solver tool in Excel).  More complex variants, which for example do not require all the equations to be linear, go by names like dynamic, stochastic, and integer programming.  You have to know more math than your instructors do to reliably use those methods.  Goal programming extends linear programming to multiple objectives by putting the objectives into a hierarchy.  Linear programming can also be ‘bent’ to address multiple objectives by treating all but the most important objective as constraints.  Figure 4 illustrates the kind of graphical output you get from linear programming.  Tabular output (the actual numbers) give you more specific insight into which constraint(s) is most binding—results you can and should explore with some sensitivity analysis (e.g., if I had another $1000 what would happen…). 
Figure 4. Hypothetical linear programming results for reserve acreage purchase where the goal is to maximize the number of combined upland and wetland hectares conserved 
(U + W) within constraints of cost, species richness, willing seller availability, and a funding source requirement for percentage of wetlands purchased.  The grey triangle represents all allowable purchase options while the star is the optimal combination.
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Decision Analysis (“soft” approaches)

Decision analysis is the process of decomposing complex problems into smaller elements that can be analyzed more easily, then recompiling the described parts to estimate what is likely to happen if we make different choices.  The idea is to improve upon unaided human intuition by stimulating thorough thinking, reducing insidious bias and errors of omission by being explicit, and using judgments and data at scales where they are more reliable (e.g., the specific component questions within the larger decision).  Decisions can be broken down into one or more actions or choices, the resulting events that follow each action, and what the overall consequences to us will be based on how we value the different possible outcomes.  Thus, decision analysis combines analysis of factual information with value or preference-based sorting of the choices.  Often the decision choices will be sequential (first this, then that…), and many of the events or outcomes will be probabilistic.  The discipline of decision theory provides a scientific basis for converting subjective human preferences and judgments into quantitative analysis.  For example, ‘utility theory’ describes how to rank how much a person or persons will give to achieve (or avoid) certain outcomes, i.e., that outcome’s ‘utility,’ usually but not necessarily expressed in dollars.  Probability theory addresses the joint likelihood of different and sequential events (including conditional, dependent probabilities etc.). 
The basic approach to organizing decision analysis problems is a decision tree, which depicts the sequence of choices, events and final outcomes (Fig 5a).  Decision trees structure the computation of outcome likelihoods (Fig 5b).  The likelihood of each final outcome is simply the combined (multiplied) probabilities of all the chance events on the path leading to that outcome.  Then each outcome likelihood is multiplied by the value we assign to that result.  Traditionally, since this discipline arose primarily in the business world, outcomes were valued in terms of money.  But other performance measures are valid; such as population status indicators for decision analysis about managing species risks.  
Another tradition is using the outcome metric called ‘expected value,’ which is the most common or likely projected outcome from combined probabilistic events (i.e., the mean outcome for multiple repetitions of the same tree).  Beware that alternative metrics may be more appropriate in risk analysis, however, such as the likelihood of the worst outcomes (e.g., the probability of population extinction, rather than the ‘expected value’ of average population size).  You need to think very carefully about the attributes you are measuring in the analysis—if you’re doing risk analysis and concerned about the likelihood of bad things happening, then do not use expected values that hide those risks.
Variants on decision trees are event trees and fault trees, which depict probabilistic outcomes of a sequence of events without alternative decisions or choices (Fig 6).  Fault trees specifically address the chances of something ‘going wrong,’ such as failure in a nuclear power plant.  ESA risk analysis problems often can be depicted as event trees, where we don’t need to assign a separate valuation to the outcome—the outcome likelihood itself is the metric of interest (e.g., the probability of extinction).  

Decision analysis to generate outcome probabilities and utilities was designed for addressing single objective problems.  When more than one objective must be considered, decision trees can be completed for each objective (measurable attribute) then the results on each attribute can be fed into methods for comparing and trading-off between objectives (grounded in Multi-Attribute Utility Theory) (see multiple objective methods, below).  
Decision analysis requires that we measure the performance of alternative decisions on specific attributes.  Different approaches can be used for these measurements to rank alternatives on quantitative scales.  If numeric values are available they can be used directly, such as population size.   For comparison across attributes (see Multiple Objective methods, below) the values must be converted to a standard interval scale, such as from 0-10 or 0-100, where 0 is the lowest performing and 10 or 100 is highest, and all intermediate alternatives are assigned a relative intervening score representing the degree of improvement between the bottom and top scoring alternatives.  Instead of 0-100, the ranking can also range from –n to +n (e.g., -3 to +3) where the metric of interest ranges from negative to neutral (0) to positive relative values.
In sum, building decision or event trees improves our thinking about problems involving uncertainty and increases the reliability of estimating probabilistic outcomes.  By revealing a clear path from information to choices, we also document our decisions and can more readily adapt to new information.  The challenge is to decompose a problem enough to be helpful—but not so much that the decision tree becomes incomprehensible.  For really complicated problems, the best strategy is to build a basic decision tree and add subsidiary or ‘feeder’ trees of specific nodes.
Figure 5a. Abbreviated graphical representation of the Po`ouli decision tree (combining a sequence of seven sequential steps into three chance nodes and dropping the ‘no’ branches for simplicity).  All chance nodes are binary—only yes or no results are possible.  The numbers show the median probability estimates for the yes branches.  Squares indicate choices, circles are chance or probabilistic events, and triangles are outcomes.  
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Figure 5b. Po`ouli decision tree. Spreadsheet version showing the median likelihood estimates for each step.  Only the ‘yes’ branches are included (all ‘no’ branches are dead-ends anyway, since the next node can’t be reached from any failed step).  The final column is the product of all previous columns.
	Po`ouli decision tree
	Median Estimates

	
	Translocation
	Survival
	Pair formation
	Breeding
	Breeding success
	Find nest + collect eggs
	Overall probability of obtaining eggs

	1-No manipulation
	0
	0.82
	0
	0
	0.55
	0.5
	0

	2-Translocation with hard release
	0.05
	0.82
	0.05
	0.5
	0.55
	0.5
	0.000

	3-Translocation, keep for pair-bond, then release
	0.15
	0.82
	0.2
	0.2
	0.55
	0.5
	0.001

	4-Long term field aviary at Hanawi
	0.95
	0.63
	0.3
	0.3
	0.5
	0.9
	0.024

	5-Short-term field captivity, then captivity
	0.9
	0.68
	0.3
	0.25
	0.6
	0.9
	0.025

	6-More accessible long term field aviary
	0.9
	0.68
	0.3
	0.3
	0.55
	0.9
	0.027

	7-Captivity
	0.9
	0.73
	0.25
	0.25
	0.75
	1
	0.031


Figure 6. Hypothetical species risk event tree. Numbers in the tree are the estimated likelihood each factor will occur (‘Yes’ branches) or not (‘No’ branches). In this tree, the factors are assumed to be independent; i.e., the likelihoods do not depend on whether other factors have or have not occurred.  The columns show the summary likelihood that each combination of factors (full branch) will occur, and if they occur, the estimated likelihood that each combination will cause a decline below the threshold of concern.  The probabilities in the ‘occur’ column must sum to 1.0—at least one of these combinations will happen!  The third column is the joint likelihood that each combination will both occur and cause a decline (occur * decline), which when summed for all combinations gives the estimated overall likelihood the species will decline. Values could be median, low or high quartile, ‘most likely’ or other estimates from an uncertainty range.
	Factor Combinations
	Likelihood

	
	Occur
	Decline
	Joint

	                                                                      Yes

                                                                                 .60
	.03
	.50
	.015

	                                             Yes                              .40
                                                    .25               No
	.02
	.40
	.008

	                                                    .75              Yes
                                              No                              .60
	.09
	.10
	.009

	                 Yes        .20                                             .40
                                                                       No
	.06
	.05
	.003

	                                                                     Yes

                   No       .80                                             .60
	.12
	.45
	.054

	                                            Yes                              .40
                                                    .25               No
	.08
	.25
	.020

	                                                    .75              Yes
                                              No                              .60
	.36
	.05
	.018

	                                                                                 .40
                                                                        No
	.24
	.00
	0

	∑
	1.0
	∑
	.0127

	Overall likelihood species will decline below threshold:
	12.7%


Multiple Objectives Decision Analysis
Additional decision analysis methods have been developed to deal with trade-offs when we are trying to address or balance more than one objective.  Multiple or multi-objective, multi-attribute and multi-criteria decision making are all synonyms.  The challenge is not only deciding about how to weight or value each objective, but how to measure performance on different attributes on scales that can be compared across the objectives.  As in single objective decision analysis, both objective and subjective information can be used and the preferences for different outcomes are based on our values and mandates.  Then another layer of assessment is required to compare alternatives across the objectives.  Again, decision theory has been developed to support the available methods.
The principle techniques available for multiple objective problems do not address uncertainties, although by using probabilistic input (from decision trees or simulation models, for example) they can be adapted to stochastic problems.  The weights assigned to different objectives or their measurable attributes generally involve subjective judgments elicited on quantitative ranking scales.  In any multiple objective method you have to guard against unintentional overweighting of attributes that overlap—e.g., double counting.  
The Simple Multi-Attribute Ranking Technique (SMART) is a simple and robust ranking method (Fig 7).  SMART requires all the attribute rankings to be on a standard (e.g., 0-100) interval scale (see ranking approaches, pg. 14), even when the difference between the lowest and highest performance on some attributes may be far less significant to the decision than on other attributes.  Thus, attribute weights must be found that reflect their relative significance to the overall ranking given not only our abstract preference for one objective over another, but how much difference the worst to best range on that attribute really makes.  This is determined by ‘swing weights’ (‘normalized’ to add to 100) (see Goodwin and Wright 1998; bibliography).  Then the alternatives are ranked overall by simply summing the weighted attribute scores—an easy and transparent approach.
Another multiple-objective method is the Analytical Hierarchy Process or AHP.  Adherents to this method use it widely, although it has weaknesses including that the computations are black box to most users (requiring calculus; i.e., software) and the objectives are all ranked against each other (pair-wise) so the results can be sensitive to changing the objectives.  Attributes are evaluated on a 9-point verbal scale (later converted to numerical ‘ratios’) compared between every possible pair of alternatives. 

Ralls and Starfield (1995, see bibliography) invented another user-friendly method they called ‘goal filtering.’  They borrowed the concept of a hierarchy of goals from the goal programming optimization method, but used it in a simple filtering approach that sequentially eliminates alternatives that fall below increasingly strict cut-offs for attribute scores.  In their example, they used simulation modeling output as the scores, which allowed them to address a stochastic problem.  Their effort illustrates that the key value of decision analysis methods is in organizing your thinking—not the fancy computations.

Figure 7. Hypothetical ‘simple multi-attribute ranking technique’ (SMART) example for reserve selection. The attributes are parcel cost (COST), social upheaval index (SOC), habitat integrity index (HAB), and species richness index (SP).
	SCORES (T)

	Parcel
	Attribute (j)

	(k)
	COST
	SOC
	HAB
	SP

	1
	100
	46
	0
	29

	2
	0
	71
	100
	0

	3
	68
	0
	8
	100

	4
	14
	100
	44
	14

	5
	39
	43
	56
	43

	 
	 
	 
	 
	 

	WEIGHTS (W)

	Attribute (j)
	Sum

	COST
	SOC
	HAB
	SP
	(S)

	24
	16
	16
	44
	100


	
	
	Weighted
	FINAL

	
	Parcel
	Sum
	SCORE

	
	(k)
	(V)
	V[k]/S

	
	1
	9128
	44

	
	2
	5643
	27

	
	3
	12664
	61

	
	4
	6712
	32

	
	5
	9087
	44
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Simulation Modeling

Modeling for population analysis is covered later in this course.  We touch on the topic here to introduce the concept of simulation modeling, in various forms, as a decision analysis tool.  Simulation modeling can provide probability values for the ‘chance’ nodes in a decision tree.  Model outcomes can also be plugged in to other decision analysis tools; for example to address uncertainty in attribute values for multiple-objective ranking methods.  Thus, modeling can be a very useful part of risk and decision analysis.  

Modeling analysis may be combined with direct empirical information and with subjective estimates.  Models themselves are typically built from a combination of subjective (‘professional’) understanding and data.  They are especially useful for conducting sensitivity analysis; all ‘data’ from stochastic systems (e.g., biology) are really just single replicates in a broad range of what could have happened or been measured.  A simulation model allows us to generate thousands of virtual replicates from stochastic variables—giving us a much more complete picture of where future events may lead.  Modeling is one approach for assessing the sensitivity of our decision choices to the attribute values we put into the decision analysis.  The ease of simulation let’s us explore alternatives through ‘what-if’ analysis, where we can use plausible scenarios for different circumstances to represent the range of uncertainty about current and future conditions.
Some examples of models used in decision making include population viability analysis (demographic) models, spatially-explicit or geographical information system (GIS)-based models, and Bayesian belief network models.  When we have more than one model or different variants of a single model to consider, we can borrow the ideas of multiple-criteria decision analysis and weight their results by each model’s plausibility or applicability to our problem.
Expert Opinion and Working with Groups

Most often, structured decision making involves working in groups and also relying, at some phase, on expert opinion.  By experts, we mean people with extensive and in-depth experience and knowledge of a subject.  Many, many methods are available for facilitating work within groups.  Coughlin and Armour (1992; see bibliography) provide a succinct tutorial on many useful techniques with application in the natural resources realm.  Our interest here is to touch on the issues of eliciting and using subjective judgments and preferences within structured decision making.  
This context is distinct from group tasks such as conflict resolution and stakeholder participation.  In essence the context for structured decision making is that the group either has a previously established objective(s) or will work constructively and analytically to develop this objective(s) and then contribute toward a rational and dispassionate analysis of decision alternatives.  Structured decision processes may indeed contribute to conflict resolution and stakeholder engagement—if the parties are receptive to rational analysis.  Decision structuring may help us find win-win solutions, but its purpose is to help find decision choices that move us closer to our objectives so a priori we have to be able to define and agree upon the objectives.  Thus, generally the conflict resolution work needs to be completed (if conflict is an issue) before group-based decision analysis can be fruitful—participants must have moved away from promoting positions toward rational solution-finding.
Extensive research in the psychology of human risk perceptions, decision making, group behaviors, and related topics has contributed to the development of approaches that reduce biases and improve the quality of information and judgments in decision analysis.  These tools are used for eliciting value-based objectives, preferences and utilities from decision makers or stakeholders, and subjective judgments or data from technical experts—i.e., the information needed to compare alternatives.  
The structuring steps we’ve already described (Fig 1) are designed to address in part these issues of decision and group psychology.  Structuring the problem into a series of controlled mental tasks keeps the expert or group focused and productively addressing the real problems.  The specific tasks are matched to appropriate pieces in the decomposed problem.  Different experts or groups may even be used for different pieces of the decision analysis.  When we force experts or others to quantify their judgments they’re typically not comfortable—but the resulting improvement in clarity about what’s being said or estimated is amazing.  Putting numbers on relative judgments does not—and should not—anoint precision or strength to expert’s subjective statements.  But it does wonders for resolving semantic ambiguities, which they and you are likely to not even have been aware of until vague terms are converted to numbers.  Quantification also allows us to complete computational decision analysis methods.
Controlling how group members interact increases the breadth of thinking, and reduces the likelihood of one or a few individuals dominating (thus failing to obtain quality information and analysis from others) or of the group rushing to a false consensus (e.g., ‘group think’).  It is important to not only pull out every participant’s judgments, but also their degree of confidence in their own perceptions and estimates of uncertainty around their estimates.  
We have borrowed from the US Forest Service’s forest planning work with species viability panels the idea of a modified Delphi approach to group decision analysis.  The approach combines anonymous input from independent experts (Delphi-like) with decision conferencing or face-to-face meeting.  The group is convened and led through shared background information, mutual description and understanding of the problem (e.g., influence diagramming) and preparation for exercises in ranking and probability estimation.  Then the exercises, constructed for a series of specific questions, are completed first by each expert individually.  After each question the results are projected anonymously, followed by facilitated but fairly open discussion where underlying thinking, insights, and new information are shared.  Then the experts individually revise (if they want) their estimates.  The results are compiled and used for the decision process without requesting or forcing a consensus.  When a group meeting is not feasible, the same process can be followed in remote or one-at-a-time communications, though the benefits of direct group interaction are lost.
Humans are subject to a suite of tendencies in assessing the likelihood and magnitude of future risks.  For example, we anchor our perceptions on past experience especially recent and dramatic events whether or not they reflect true underlying ‘base probability rates.’  We are especially poor at intuitively judging the chances of very rare events like extinction!—which is one reason to decompose extinction risk estimation into contributory events that are both more likely to occur and to be more familiar to us. Humans are also not intuitively adept at thinking about uncertainty as probabilities (% chances); we do better with the concept of ‘odds’ or ratios of good to bad outcomes.  Thus, it is better for example, to solicit estimates of extinction risk in terms like “if you had 100 populations of swamp butterflies how many do you think would go extinct…” rather than “what is the likelihood of swamp butterfly extinction?”  To read about these behavioral patterns before working with subjective probability ‘data,’ start with Chapters 9-10 in the Goodwin and Wright text (see bibliography).
In conclusion, Table 2 provides a list of rules-of-thumb (heuristics) for gathering and using subjective information, particularly expert opinion, in decision analysis.  
Table 2. Heuristics for Eliciting and Using Subjective Information.
Eliciting subjective information (informed opinions)
1. Identify the issues for which you need expert opinion then identify potential participants based on their expertise on those issues (e.g., search peer-reviewed literature, review curriculum vitae, and assess reputation in the field)

2. Among potential experts, recruit those who are willing and able to participate constructively, including expressing uncertainty explicitly, working in groups, etc. as appropriate to your exercise (hence you need clarity about what your issues and tasks will be); eliminate those with demonstrated conflicts of interest or advocacy positions (especially if you are working on a regulatory issue) (e.g., by web search and interviews)

3. Learn something about human cognitive tendencies; be prepared to control for likely biases in human judgment and memory by following the steps below (or hire a consultant/facilitator)

4. Provide a common pool of up-to-date information (both review and new information help assure comprehensive, critical thinking)

5. Clearly define the questions and issues you are posing— avoid vague or too-general questions (except when desired to elicit novel thinking or brainstorming)

6. Decompose the question(s) into more easily assessed pieces; avoid ‘global’ questions that are hard to think about rigorously or anticipate social outcomes

7. Use visual aids; develop causal or conceptual diagrams to decompose and illustrate the logical linkages and cause-effect relationships between key factors and the outcomes of concern; preparing a diagram is a good place to start framing the analysis as well as tool for communicating the eventual results of the analysis

8. Define all terms used in the analysis; check carefully about meanings (and keep re-checking)

9. Motivate and prepare the experts to express judgments about uncertain connections and events (e.g., humans think more reliably when questions are posed as ‘odds’ rather than probabilities)

10. Make sure responses or judgments are expressed as precisely as possible (e.g., quantify); minimize ambiguity or ‘semantic uncertainty’ about terms such as ‘large,’ ‘fast,’ ‘significant’

11. In group settings, control for ‘group think’ and cross-individual influences or dominance (e.g., use Delphi-type techniques)

12. Attempt to check consistency in judgments (e.g., ask the same questions differently)

13. Elicit and record uncertainty as fully as possible, such as eliciting answer ranges, likelihood distributions, fuzzy answers, or other expressions of confidence; be very cautious about averaging, lumping, or generalizing results across experts

14. Provide feedback and revision opportunities; help participants improve their performance

15. Document the process

Using subjective information in reports and administrative records

1. Clearly identify sources

2. Identify the basis for their inference or conclusions

a. direct experience

b. extrapolation from parallel or similar situation 

c. extrapolation from general experience or theory

d. pure guess

3. Identify how the information was elicited (e.g., type of structured process; informal conversation, etc.)

4. Retain uncertainties (and confidence) elicited with the information; don’t omit outliers (at least without fully documenting why)

5. Peer review the information; get second opinions (but be sure to provide the reviewers with a thorough explanation of the context or problem being addressed)

6. Combine and compare with other information sources

Expert Systems and Decision Support Systems

Expert systems are computerized flow charts that lead the user interactively through a series of questions and answers about decision choices.  The intention is to capture and make explicit, for educational interaction, everything an expert or pool of experts know about the particular type of problem and all alternative solutions.  Thus, they make available the best expert advice to guide analysts or decision makers toward rational and robust solutions to problems that will be encountered repeatedly (it’s not worth building an expert system for one-off or uncommon decision situations).  The process does not need to be strictly prescriptive—the ‘results’ may be multiple or ranked choices, and decisions often still require the user’s judgment.
Expert systems are built from a “knowledge base,” like an encyclopedia of questions and answers.  The user interacts with it through a graphical interface and an “inference engine” that follows programmed logic rules for proceeding among the questions and offered responses (i.e., down the flow chart).  The inference engine consists of carefully designed if-then rules.  The underlying flow chart or possible paths through an expert system may be very complex including loops and alternatives (e.g., not strictly linear).  A well programmed expert system keeps a record of all the users’ queries and responses, and may even require the user to input justifications (e.g., data sources) for answers.  Thus the result can be a superb administrative record for decisions.  Good expert systems also have extensive ‘help’ features, allowing the user to ask ‘why?’ or ‘tell me more’ to specific questions or lines of reasoning.  To deal with uncertainty, an expert system can allow input to include uncertain answers (ranges, distributions, weighted answers, etc.).  For example, the commercial software available for ranking species by IUCN risk categories (RAMAS Redlist®) allows input as intervals rather than point estimates, and carries those estimates through (by interval arithmetic) to the final classifications as likelihoods of falling within each category.
Small expert systems can be build fairly quickly and used for particular though repetitive problems.  As they grow in size or scope of intended use they may be called Decision Support Systems, though at heart these are the same thing.  Large systems can become unwieldy and burdensome to maintain as can any large computer program.  As with any problem modeling including simulation models it is best to start small and work through iterative, progressive versions of the tool rather than investing heavily in a major product that may not in the end be very useful.

Recap:  Hallmarks of Structuring Decisions 
· Clearly stated problem, objectives, and measurable attributes (often the most challenging part!)

· Transparency, structure and quantification of analysis

· array of tools; fit to type of problem

· Not formulaic outcomes (though degree depends on tool)

· Clarifies and articulates human judgments

· Deals with uncertainty

· sources identified and may be incorporated in estimates

· link risk analysis (science) with risk management (policy)
· In regulatory realm, need policy for decision standards (values/utilities)

· Decision record and defensibility
Structured Decision Making--Selected Bibliography
General References

Clemen R.T. and T. Reilly. 2001. Making Hard Decisions with DecisionTools®. Duxbury, Pacific Grove, CA. 


Good general textbook loaded with examples.  Comes with student version of popular decision analysis software.

Goodwin and Wright. 2004. Decision Analysis for Management Judgment.  3rd Ed. Wiley and Sons, NY. 477pp.

Accessible introductory text book covers all the decision analysis topics.  This edition includes especially strong chapters on human judgment.  

Hammond, J.S., R.L. Keeney, and H. Raiffa. 1999. Smart Choices: a practical guide to making better life decisions. Broadway Books, NY. 242pp. 
Popular, easy-to-read treatment with simplified PrOACT guidelines for how to organize decision structuring.  If you only read one reference, pick this one.
Keeney, R.L. 1992. Value-Focused Thinking: a path to creative decisionmaking. Harvard University Press, Cambridge, MA. 416pp.

The original and still the best description of why carefully defining values and objectives is critical to improving decision making—and how to do it.  Many of these ideas are now part of texts like those, above, but this book is more thorough.
Kleindorfer, P.R., H.C. Kunreuther, and P.J.H. Shoemaker. 1993. Decision Sciences: an integrated approach. Cambridge University Press, UK. 470pp.

A more dense and theoretical text book than the others listed here, but also the only one we’ve found that covers all the topics we lump under ‘structured decision making.’  Coverage of management science (optimization) and expert systems is limited, but the book’s strength is putting a very full range of ideas and approaches into perspective.
National Research Council.  1995.  Making ESA Decisions in the Face of Uncertainty.  Pp. 157-178 in Science and the Endangered Species Act.  National Academy Press, Wash., DC.


Great summary of the basic ideas about structuring decisions in an ESA context. 

Risk Analysis and Decision Making Under Uncertainty

Akcakaya, H. R., et al. 2000. Making consistent ICUN classifications under uncertainty. Conservation Biology 14(4):1001-1013

Describes how to use intervals (‘fuzzy numbers’) in place of point estimates when species information is uncertain, to assure that decisions take full account of uncertainties.
Anderson, J.L. 1998. Embracing uncertainty. Conservation Ecology 2:2. Online at: 

http://www.consecol.org/vol2/iss1/art2 


Presents tactics for using Bayesian methods, so uncertainty can be better treated in decision making.  Good discussion of human cognition of uncertainty and probability.

Burgman, M. A., S. Ferson and H. R. Akçakaya. 1993. Risk Assessment in Conservation Biology. Chapman Hall, New York. 314 pp.

Thorough description of risk assessment simulation modeling for conservation biology contexts (e.g., population viability analysis).  See Morris and Doak for more current treatment.
Maguire, L.A. 1991. Risk analysis for conservation biologists. Conservation Biology 5(1):123-125.


A call for using the risk analysis framework for decisions about environmental impacts, with discussion of traditional and alternative burden of proof standards.
Morris, W.F. and D.F. Doak. 2003. Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis. Sinauer Associates, Inc. 480pp.
Covers multiple approaches to population viability analysis, including ‘count-based PVA’ (extrapolation of trends from survey data), demographic simulation, and habitat occupancy (e.g., presence-absence modeling) approaches.  Excellent, more technical reference.
Peterson, G.D., G.S. Cumming, and S.R. Carpenter. 2003. Scenario planning: a tool for conservation in an uncertain world. Conservation Biology 17(2):358-366.


Offers the framework of using scenarios to explore and improve understanding of uncertainties; and how to incorporate into decision making processes.
Van den Belt, M. 2004. Mediated Modeling: a systems dynamics approach to environmental consensus building. Island Press, CA. 296pp.

Extensive help on how to involve stakeholders in interactive modeling analysis to gain better understanding and solutions to controversial problems.  Illustrated with a ‘systems modeling’ approach using the platform Stella, but the broader ideas apply to all kinds of modeling and problem analysis.

Decision Analysis With Decision Trees

Behn, R.D. and J.W. Vaupel. 1982. Quick Analysis for Busy Decision Makers. Basic Books, Inc. New York, NY. 415pp.

An entire book on decision trees and decision analysis.
Maguire, L.A. and R.C. Lacy. 1990. Allocating scarce resources for conservation of endangered subspecies: partitioning zoo space for tigers.  Conservation Biology 4:157-166.

Case study of using decision trees with expected values for genetic diversity persistence to select a preferred alternative, using expert opinion likelihood estimates.
Starfield, A.M. and A.M. Herr. 1991. A response to Maguire.  Conservation Biology 5:435

Critique of using ‘expected values’ or the most likely outcome in decision trees to represent one-time events.  Alternatives are presented to better address risk avoidance values, such as minimax criteria.  Also lists the ‘key attributes of a decision analysis.’
Thibodeau, F.R. 1983. Endangered species: deciding which species to save. Environmental Management 7(2):101-107.


Early application of decision trees to an endangered species problem.

Multiple Objective Decisions

Belton, V. and T.J. Stewart. 2002. Multiple Criteria Decision Analysis. Kluwer Academic Publishers.

A comprehensive, but not too technical overview of Multi-Criteria Decision Analysis.
Bojórquez-Tapia, L.A., Brower, L.P., et al. 2003. Mapping expert knowledge: redesigning the monarch butterfly biosphere reserve. Conservation Biology 17(2):367-379. 


Example of Analytical Hierarchy Process using subjective expert judgments.

Maguire, L.A. and C. Servheen. 1992. Integrating biological and sociological concerns in endangered species management: augmentation of grizzly bear populations.  Conservation Biology 6:426-434.

Decision trees with expected values for multiple criteria followed by tradeoff analysis of pair-wise combinations for two of the criteria, species viability and conflicts with humans.
Ralls, K. and A.M. Starfield. 1995. Choosing a management strategy: Two structured decision-making methods for evaluating the predictions of stochastic simulation models.  Conservation Biology 9:175-181.


Examples of exploring multiple objective trade-offs under uncertainty with SMART and a ‘goals hierarchy’ technique, combining likelihood outputs from simulation modeling with preference weighing from stakeholders for management of an endangered species.
Mendoza, G.A. and W. Sprouse. 1989. Forest planning and decision making under fuzzy environments: an overview and illustration. Forest Science 35(2):481-502.

Somewhat technical example of modeling to generate alternatives under uncertainty (‘fuzzy models’) combined with Analytical Hierarchy Process to rank alternatives.

Optimization

Guikema, S. and M. Milke. 1999. Quantitative decision tools for conservation programme planning: practice, theory and potential. Environmental Conservation 26:179-189.

Illustration of using integer linear programming to select an optimal set of conservation projects to fund given multiple, weighted selection criteria (utilities).

Haight, R.G., Cypher, B, P.A. Kelly, et al. 2002. Optimizing habitat protection using demographic models of population viability. Conservation Biology 16(5):1386-1397.
A neat study combining stochastic population modeling to produce an ‘extinction risk function’ with linear programming to find cost-efficient land purchase strategies for the San Juaquin kit fox.

Possingham, H.P. 1997. State-dependent decision analysis for conservation biology. Chapter 24 in Pickett et al. (eds). The Ecological Basis of Conservation. 


Sequential decisions using presence/absence metapopulation modeling and Markov decision theory to find optimal solutions.

Pressey, R.L., H.P. Possingham, and J.R. Day. 1997. Effectiveness of alternative heuristic algorithms for identifying indicative minimum requirements for conservation reserves. Biological Conservation 80:207-219.

Compares many different formulas for computing which set of land areas maximize reserve site benefits while minimizing costs and/or area.  They consider both optimizing algorithms and less rigid ‘heuristics.’
Expert Opinion and Group Facilitation

Ayyub, B.M. 2001. Elicitation of Expert Opinions for Uncertainty and Risks. CRC Press, Boca Raton, FL. 302pp.
The best, though technical, textbook on how to elicit and use expert opinion for risk analysis.

Andelman, S.J. et al. 2001. Scientific standards for conducting viability assessments under the National Forest Management Act: report and recommendations of the NCEAS working group. Chapter 8: Expert Opinion. National Center for Ecological Analysis and Synthesis, Santa Barbara, CA. 
see: http://www.nceas.ucsb.edu/ Open "Research Projects" tab on the left sidebar; search for: "Review of Forest Service Viability Assessment Processes;" when it opens click on NCEAS viabilty final report 1201 in PDF format

Concise guidance on using experts and facilitating expert groups to aid decisions about species conservation.

Coughlan, B.A.K. and C.L. Armour. 1992. Group decision-making techniques for natural resource management applications. U.S. Fish and Wildlife Service Resource Publication 185.


Overview of techniques used to aid group decision making, focusing on group behaviors and processes more than the details of decision analysis methods.
Marcot, B.G. 1997. Use of expert panels in the terrestrial ecology assessment, Interior Columbia Basin ecosystem management project. Extract from Marcot, B. G., M. A. Castellano, J. A. Christy, L. K. Croft, J. F. Lehmkuhl, R. H. Naney, R. E. Rosentreter, R. E. Sandquist, and E. Zieroth.  1997.  Terrestrial ecology assessment.  Pp. 1497-1713 in:  T. M. Quigley and S. J. Arbelbide, ed.  An assessment of ecosystem components in the interior Columbia Basin and portions of the Klamath and Great Basins. Volume III.  USDA Forest Service General Technical Report PNW-GTR-405.  USDA Forest Service Pacific Northwest Research Station, Portland, OR.  1713 pp. Available online at: http://www.spiritone.com/~brucem/icbexexp.htm

Succinct summary of how expert panels were used; easily accessed online.
Shaw, C.G. III. 1999. Use of risk assessment panels during revision of the Tongass Land and Resource Management Plan. General Technical Report PNW-GTR-460. USDA Forest Service, Pacific Northwest Research Station, Portland, OR.


Describes the protocol developed by the US Forest Service to conduct multiple species viability assessments using expert panels and the ‘modified Delphi’ approach (adapted from the NW Forest Plan effort (FEMAT 1993)).

Modeling
Beres, D.L., C.W. Clark, G.L. Swartzman, and A.M. Starfield. 2001. Research notes: truth in modeling. Natural Resource Modeling 14(3):457-463.
A very short and to-the-point article on what modelers should always describe when reporting modeling projects.

Oreskes, N., K. Shrader-Frechette and K. Belitz. 1994. Verification, validation and confirmation of numerical models in the earth sciences. Science 263:641-646.

Discussion of often misused terminology, and what you really need to know about simulation model evaluation and reliability in the biological as well as earth sciences.
Peck, S.L. 2000. A tutorial for understanding ecological modeling papers for the nonmodeler. American Entomologist 46(1):40-49 [condensed in 2001 in Conservation Biology in Practice 2(4):36-40].

A quick summary of modeling concepts, with a nice glossary.  Covers spatial and demographic modeling.

Starfield, A.M. 1997. A pragmatic approach to modeling for wildlife management. Journal of Wildlife Management 61:166-174.

Easily read summary of very practical ideas about how to model, and how to look at others’ models.  

Starfield, A.M. and A.L. Bleloch. 1991. Building Models for Conservation and Wildlife Management. Burgess International Group, Inc., Edina, MN. 253pp.
How-to book on creating useful models.  Helps you decide what kind of model fits your problem, from deterministic and unstructured to stochastic, spatially-structured and individual-based models.
Some Web Resources for Expert Systems and Decision Analysis

CAVEAT:  This list is just to get you started investigating.  The course instructors, NCTC, and USFWS do not endorse any of the products referenced; we haven’t even tried to use most of them (URRL’s checked 8 Jan 2004).

General
Decision Analysis Society (especially see the “Field of Decision Analysis” link)


http://decision-analysis.society.informs.org
International Society on Multiple Criteria Decision Making (see Publications and Software)


http://www.terry.uga.edu/mcdm/
Expert Systems

Netweaver expert system shell software (Penn State Univ)

http://www.rules-of-thumb.com/  

XpertRule Knowledge Builder


http://www.attar.com/pages/info_kb.htm
CLIPS


http://www.ghg.net/clips/CLIPS.html
Examples: 

EMDS (Forest Service’s ecosystem management decision support system)

http://www.fsl.orst.edu/emds/ 

RAMAS Red List (IUCN species risk classification)


http://www.ramas.com/redlist.htm
International Journal of Information Technology and Decision Making


http://www.worldscinet.com/ijitdm/ijitdm.shtml
Decision Trees & Risk Analysis (generally add-ins for Excel)
PrecisionTree, @Risk, and related programs

http://www.palisade.com 

Analytica


http://www.lumina.com/ana/whatisanalytica.htm
Decision Pro


http://www.vanguardsw.com/
Decision Tree (free; Arizona State Univ.; other links on site also helpful)


http://www.public.asu.edu/~kirkwood/
Decision ToolPak


http://www.treeplan.com/
List of other options


http://faculty.fuqua.duke.edu/daweb/dasw6.htm

http://faculty.fuqua.duke.edu/daweb/dasw5.htm
Multiple Objective Methods (SMART, AHP)
DecisionPlus (site also gives many additional web links under Highlights)

http://www.infoharvest.com/
Expert Choice


http://www.expertchoice.com/
Logical Decisions


http://www.logicaldecisions.com/
Lists of other options


http://faculty.fuqua.duke.edu/daweb/dasw1.htm
http://www.mit.jyu.fi/MCDM/soft.html
Bayesian Belief Networks and Decision Support

Netica (includes BBN tutorial link & free, full-featured demo version to download)
http://www.norsys.com/
Bruce Marcot’s personal web page with BBN information for ecology applications


http://www.spiritone.com/~brucem/bbns.htm




Sample of University Courses in Natural Resource-Related Decision Making
University of Idaho; Decision Making Techniques in Resource Management; Dr. Piotr Jankowski (especially optimization, GIS, quantitative analysis)


http://geolibrary.uidaho.edu/courses/Geog427/
Duke University; Environmental Decision Analysis; Dr. Lynn Maguire (overview of methods, emphasizing the Clemen and Reilly text book; good bibliography)

http://fisher.osu.edu/~butler_267/DASyllabi/Maguire.html
Decision Analysis Society list of decision analysis syllabi and courses on the web:

http://fisher.osu.edu/~butler_267/DASyllabi/
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(data, estimates, opinions…) 
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� Ok, ‘failing to reject’ in technically correct terms; we can never ‘prove’ that a hypothesis is correct.





